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1. Introduction

One of the most natural goals in algebraic geometry is to classify
projective varieties over an algebraically closed field k up to birational
isomorphism. Recall that two varieties are birational if they have iso-
morphic open subsets or equivalently isomorphic function fields. In
this note we will assume that k = C is the field of complex numbers.
The strategy behind this classification is as follows. Starting with a
(irreducible and reduced) variety X ⊂ PNC of dimension d := dimX,
by Hironaka’s theorem, we may assume that X is smooth and consider
the pluricanonical ring R(KX) :=

⊕
m≥0H

0(mKX). Note that if X
and Y are smooth and birational, then their pluricanonical rings are
isomorphic R(KX) ∼= R(KY ).

Recall that if X is smooth, then the top exterior power of the cotan-
gent bundle ωX = ΛdT∨X is a line bundle and the global sections of
H0(mKX) correspond to the global sections of ω⊗mX so that in local
coordinates x1, . . . , xn, they can be written as f(x1, . . . , xn)(dx1∧ . . .∧
dxn)⊗m where f(x1, . . . , xn) is a holomorphic function.

By [BCHM10], it is known that R(KX) is finitely generated and so
one may consider the corresponding projective variety Z = ProjR(KX).
The integer

κ(X) := tr.deg.CR(KX)− 1 ∈ {−1, 0, 1, . . . , dimX}

is the Kodaira dimension of X and the rational map X 99K Z is the
Iitaka fibration. Note that κ(X) = dimZ. Often we replace X by an
appropriate birational model so that X → Z is a morphism. There are
three main cases to consider, namely varieties of maximal Kodaira di-
mension κ(X) = dimX also known as varieties of general type, varieties
of intermediate Kodaira dimension dimX > κ(X) ≥ 0, and varieties
of negative Kodaira dimension 0 > κ(X).

Exercise 1.1. Show that if X and Y are birational smooth projective
varieties, then H0(ω⊗mX ) ∼= H0(ω⊗mY ) for all m ∈ N.
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Exercise 1.2. Give an example of a singular projective variety X such
that R(KX) 6∼= R(KY ) where Y is birational to X.

1.1. Curves. If d = 1, then we say that X is a curve. In this case
ωX is a line bundle of degree 2g − 2 where g is the genus of X so that
2g = B1(X) is the first Betti number.

The case κ(X) < 0 corresponds to g = 0. In this case X ∼= P1 and
ωX = OP1(−2) so that H0(ω⊗mX ) = H0(OP1(−2m)) = 0 for all m ≥ 1.
Thus R(KX) ∼= C is clearly finitely generated.

The case κ(X) = 0 corresponds to g = 1. In this case we say that
X is an elliptic curve. We have that ωX ∼= OX so that H0(ω⊗mX ) ∼=
H0(OX) ∼= C and hence R(KX) ∼= C[t] which is also finitely generated.
Note however that there is a one parameter family of elliptic curves
(Xt defined by y2 = x(x − 1)(x − t)) and the canonical ring does not
identify the isomorphism class of X.

The case κ(X) = 1 corresponds to g ≥ 2. In this case we say that X
is a curve of general type. The line bundle ωX has degree 2g−2 > 0 and
hence is ample. Recall that this means that some tensor power ω⊗mX
for some m > 0 is very ample (i.e. the sections of H0(ω⊗mX ) define an
embedding in to PN). It is not hard to see that ω⊗3

X is very ample and
so every curve of general type can be embedded in |3KX | ∼= P5g−6 as a
curve of degree 6g−6. In particular, by a Hilbert scheme argument, for
fixed g ≥ 2, these curves belong to a bounded family. In fact it is known
that these curves are parametrized by an irreducible quasi-projective
variety of dimension 3g − 3.

Exercise 1.3. Show that if X is a smooth curve of genus g ≥ 2 then
ω⊗mX is very ample for m ≥ 3.

Exercise 1.4. Show that if X is a smooth curve of genus g ≥ 2 then
h0(ω⊗mX ) = (2m− 1)(g − 1) for m ≥ 2.

Exercise 1.5. Show that if X is a smooth curve of genus g ≥ 2 then
h1(TX) = 3g − 3.

1.2. Surfaces. If d = 2, then we say that X is a surface. In this
case κ(X) ∈ {−1, 0, 1, 2}. Note that there are many birational but not
isomorphic smooth surfaces. To see this, just take a smooth surface
X and blow up a point x ∈ X to obtain f : X ′ → X such that
f is an isomorphism over X \ x and f−1(x) = E is a rational curve
E ∼= P1 and KX′ · E = E · E = −1. Recall that by Castelnuovo’s
Criterion, if a smooth surface X contains a rational curve E ∼= P1 such
that E · KX = −1 (or equivalently E · E = −1), then there exists a
morphism f : X → Y such that f(E) = y is a point on Y and X is
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isomorphic to the blow up of Y at y. If X contains no minus 1 curves
(i.e. smooth rational curves E such that E2 = −1), then we say that
X is minimal. By Castelnuovo’s Criterion, it follows easily that every
smooth surface is birational to a (smooth) minimal surface. It is well
known that if κ(X) ≥ 0, then the corresponding minimal surface is
unique. This is not the case if κ(X) < 0.

If κ(X) < 0, then X is birational to a ruled surface X ′ = PC(E)
where C is a curve and E is a rank 2 vector bundle on C.

If κ(X) = 0, then X is birational to one of the following minimal
surfaces:

(1) Abelian surface: h0(Ω1
X) = 2 and h0(ωX) = 1. We have TX ∼=

O⊕2
X and so KX = 0. For example X = E × F where E,F are

elliptic curves.
(2) K3 surface: h0(Ω1

X) = 0 and h0(ωX) = 1. We have KX = 0.
For example a hypersurface of degree 4 in P3 or a complete
intersection of degree 2, 3 (resp. 2, 2, 2) in P4 (resp. P5).

(3) Bielliptic surfaces: h0(Ω1
X) = 1 and h0(ωX) = 0. For these

surfaces KX 6= 0 but 12KX = 0. Let k be the smallest positive
integer such that kKX = 0, then there is an étale cover X ′ → X
of degree k such that X ′ = E × F is an abelian surface given
by the product of two elliptic curves. We may assume that X
is the quotient of X ′ by a finite abelian group of order 2, 3, 4,
or 6.

(4) Enriques surfaces: h0(Ω1
X) = 0 and h0(ωX) = 0. For these

surfaces KX 6= 0 but 2KX = 0. The corresponding double
cover is a K3 surface.

If κ(X) = 1, then X is birational to a surface X ′ with a morphism
f : X ′ → C such that the general fiber F of f is an elliptic curve. For
example consider the product of an elliptic curve F with a curve C of
genus g ≥ 2.

If κ(X) = 2 and X is minimal, then we say that X is a minimal
model (which is unique). In this case KX is nef which means that
KX ·C ≥ 0 for any curve C ⊂ X. By a result of Bombieri, it is known
that the linear series |5KX | is base point free so that for any x ∈ X
there exists a divisor D ∈ |5KX | whose support does not contain x.
It follows that |5KX | defines a morphism f : X → PN = |5KX |. It
is well known that if D is nef and big (so that D · C ≥ 0 for any
curve C ⊂ X and D2 > 0), then hi(KX + D) = 0 for i > 0. In
particular hi(mKX) = 0 for i > 0 and m ≥ 2 so that h0(mKX) =

χ(mKX) = m(m−1)
2

K2
X + χ(OX). Let Xcan = f(X), then f : X → Xcan

is a morphism that contracts all curves C ⊂ X such that KX · C =
3



0. It is not the case that Xcan is smooth, but its singularities are
well understood: they are du Val singularities (also known as rational
double points orcanonical singularities). In particular ωXcan is an ample
line bundle and in fact ωXcan

∼= OXcan(1) is very ample. It follows easily
that R(KX) ∼= R(KXcan) is finitely generated and hence we have Xcan

∼=
ProjR(KXcan). We say that Xcan is the canonical model. Notice that
the canonical model uniquely determines the minimal model (which is
obtained by taking the minimal desingularization). The upshot is that
if we fix v = K2

X = K2
Xcan

, then Xcan is a subvariety of PN of degree 25v
and so by a Hilbert scheme type argument, it belongs to a bounded
family. In particular for fixed v there are only finitely many topological
types for the corresponding minimal/canonical models.

Exercise 1.6. Show that if f : X ′ → X is the blow up of X at x, then
E = f−1(x) is a smooth rational curve with KX · E = E · E = −1.
Note that B2(X ′) = B2(X) + 1.

Exercise 1.7. Using Castelnuovo’s Criterion, show that every smooth
surface is birational to a minimal surface.

Exercise 1.8. Show that if X is ruled then |mKX | = ∅ for all m > 0.

Exercise 1.9. Show that if X is ruled then h0(Ω1
X) = h0(ωC).

Exercise 1.10. Show that P2 is birational to a ruled surface.

Exercise 1.11. Let Fn = PP1(OP1 ⊕ OP1(n)), then Fn and Fm are
birational but not isomorphic for any n 6= m ≥ 0.

Exercise 1.12. Show that Fn is minimal iff n 6= 1.

Exercise 1.13. Show that a hypersurface of degree 4 in P3 or a com-
plete intersection of degree 2, 3 (resp. 2, 2, 2) in P4 (resp. P5) are K3
surfaces.

Exercise 1.14. Show that if X is birational to a surface X ′ with a
morphism f : X ′ → C such that the general fiber F of f is an ellip-
tic curve, then κ(X) ≤ 1 give examples where κ(X) = 0,−1. Give
examples where not all fibers are isomorphic.

Exercise 1.15. Show that if a divisor D is semiample, then it is also
nef. Give an example of a divisor D which is nef but not semiample.

Exercise 1.16. Show that χ(OX) is a birational invariant.

Exercise 1.17. Show that χ(mKX) = m(m−1)
2

K2
X + χ(OX).
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1.3. n-folds. Not surprisingly, in dimension d ≥ 3 the situation is
much more complicated. We begin by recalling the following funda-
mental result of [BCHM10].

Theorem 1.18. Let X be a smooth complex projective variety, then
R(KX) is finitely generated.

An immediate consequence of this result, is that if X is of gen-
eral type, then it is birational to a unique canonical model Xcan =
ProjR(KX). In fact, for any m � 0, the closure of the image of the

induced rational map φm : X 99K |mKX | is φm(X) ∼= Xcan. We make
the following observations:

(1) Xcan is not necessarily smooth, but its singularities are canonical
and in particular rational and we have H0(ω⊗mXcan

) ∼= H0(ω⊗mX )
for any smooth (or with canonical singularities) variety X bi-
rational to Xcan. It follows that

Kd
Xcan

= vol(KX) := lim
d!h0(mKX)

md
.

(2) If X is a variety of general type (smooth or with terminal singu-
larities), then it admits a minimal model. The minimal model is
not necessarily unique, but any two minimal models are related
by a finite sequence of flops.

(3) ω⊗mXcan
is a line bundle for all m > 0 sufficiently divisible, however

ωXcan may not be Cartier so we could have Kd
Xcan

< 1. In
fact, by an example of [Iano-Fletcher00], if X is a weighted
complete intersection of degree 46 in weighted projective space
P(4, 5, 6, 7, 23), then vol(KX) = 1/420 and |mKX | is birational
if and only if m = 23 or m ≥ 27.

Following ideas of H. Tsuji in [HM06], [Takayama06] and [Tsuji07],
the following remarkable result is proven.

Theorem 1.19. Let d ∈ N and Pd be the set of all smooth projective
d-dimensional varieties of general type.

(1) There exists an integer m = md depending only on d such if
X ∈ Pd, then |mKX | is birational.

(2) The set Vd = {vol(KX)|X ∈ Pd} is discrete and in particular
there is a minimal element 0 < vd ∈ Vd.

(3) For any v ∈ Vd, there exists a projective morphism of quasi-
projective varieties X → T such that if X is a d-dimensional
canonical model, then X ∼= Xt for some t ∈ T .

The above theorem shows that vol(KX) is the correct higher dimen-
sional generalization of the genus of a curve. It is a discrete birational
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invariant. Once this invariant is fixed, the corresponding canonical
varieties of general type are parametrized by a quasi-projective variety.

If we wish to use these ideas to construct a proper moduli space, we
must also consider the corresponding problem for slc models (X,B),
i.e. the higher dimensional generalization of stable curves.

If 0 ≤ κ(X) < d, then one considers the Iitaka fibration X 99K
Z := Proj(R(KX)). This is defined by |mKX | for m > 0 sufficiently
divisible. The fibers of X 99K Z are varieties F with κ(F ) = 0 and
R(KX) ∼= R(KZ+B) where (Z,B) is a klt pair and KZ+B is of general
type. Therefore the geometry of of X can be described in terms of lower
dimensional pairs of general type and varieties of Kodaira dimension
0. Note that the case of dimension 0 is particularly hard to study. In
particular it is not even clear if there are finitely many topologies for
minimal threefolds of Kodaira dimension 0.

Finally, if κ(X) < 0, then it is known that X is birational to a Mori
fiber space f : X ′ → Z. We have

(1) ρ(X ′/Z) = 1,
(2) X ′ has terminal singularities, and
(3) KX′ is ample over Z.

In particular, the fibers of f are Fano varieties (F is terminal and −KF

is ample). Therefore we view terminal Fano varieties as building blocks
for Fano varieties. A famous conjecture of Alexander Borisov, Lev
Borisov, and Valery Alexeev (known as the BAB conjecture) states that
terminal Fano varieties of dimension d are bounded. This conjecture
was recentluy solved in [Birkar16b].

Theorem 1.20. Fix d ∈ N, then the set of all terminal projective
varieties such that −KX is ample is bounded.

.

2. preliminaries

2.1. Singularities of the MMP. In this section we recal the stan-
dard notions of singularities of the minimal model program. Let X
be a normal quasi-projective variety and D =

∑
diDi be an R-divisor.

Here we assume that the Di are distinct prime divisors and di ∈ R. The
support of D is Supp(D) = ∪di 6=0Di. Recall that by definition a divisor
G is R Cartier if locally we may write G =

∑
ri(gi) where ri ∈ R and

(gi) is the divisor associated to a rational function gi ∈ C(X). If r ∈ R,
then we let

dre = min{n ∈ Z|n ≥ r}, brc = max{n ∈ Z|n ≤ r}
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be the round up and round down of r. We also define the fractional
part {r} = r − brc ∈ [0, 1). For any R-divisor D =

∑
diDi, we define

the round up dDe, round down bDc and fractional part by

dDe =
∑
ddieDi, bDc =

∑
bdicDi, {D} =

∑
{di}Di.

Recall that by definition

Γ(OX(D)) = {f ∈ C(X)|(f) +D ≥ 0} = Γ(OX(bDc)).
If X is normal, then the nonsingular locus Xreg is a big open sub-
set so that Xsing := X \ Xreg is a closed subset of codimension ≥ 2
in X. Therefore, we let KX = i∗KXreg where KXreg is a Canoni-
cal divisor on KXreg (equivalently ωKXreg

∼= OXreg(KXreg)). We define

ωX = i∗ωKXreg
= OX(KX). Note that KX is a Weil divisor, but it may

not be R-Cartier. If B =
∑
biBi is an R-divisor such that KX + B is

R-Cartier, then we say that (X,B) is a pair. If (X,B) is a pair, then
since KX + B is R-Cartier, the pull-back f ∗(KX + B) is defined for
any morphism of normal varieties f : X ′ → X. Suppose now that f is
proper and birational. We write

KX′ = f ∗(KX +B) + AX′(X,B).

Note that we chose KX′ so that f∗KX′ = KX .

Lemma 2.1. The divisor AX′ does not depend on the choice of KX

(here for simplicity we supress (X,B) from the notation so that AX′ :=
AX′(X,B)).

Proof. Suppose that we have KX′ = f ∗(KX + B) + A and K ′X′ =
f ∗(K ′X+B)+A′ where KX , K

′
X , KX′ , K

′
X′ are canonical divisors chosen

so that f∗(KX′) = KX and f∗(K
′
X′) = K ′X , then f∗(A − A′) = 0 and

A − A′ ∼R 0 so that by the Negativity Lemma (see below), A − A′ =
0. �

Lemma 2.2 (Negativity Lemma). Let f : X → Y be a proper bira-
tional morphism of normal varieties and B a Q-Cartier divisor such
that −B is f nef, then B is effective if and only if so is f∗B. In this
case, i.e. if B ≥ 0, then for any y ∈ Y , either f−1(y) ⊂ Supp(B) or
f−1(y) ∩ Supp(B) = ∅.

Proof. See [KM98, 3.39] �

The R-divisor AX′(X,B) =
∑
a(E;X,B)E defined by the above

equation is the discrepancy divisor and the numbers a(E;X,B) are the
discrepancies of (X,B) along the divisors E. Notice that a(E;X,B) =
0 unless E is contained in the support of the strict transform of B or E
is exceptional. In particular AX′(X,B) is a finite sum. If E = f−1

∗ Bi,
7



then a(E,X,B) = −bi. The discrepancies a(E,X,B) do not depend on
the choice of the birational model X ′. In fact if ν : X ′′ → X ′ is another
birational morphism, then ν∗AX′′(X,B) = AX′(X,B). In particular we
have defined a b-divisor A by letting AX′ = AX′ := KX′−f ∗(KX +B)
for any birational modelX ′ → X. (Recall that a b-divisor D is specified
by the choice of a divisor DX′ for any birational model f : X ′ → X
which is compatible with respect to push-forwards; the set of all b-
divisors is then identified with lim←−Div(X ′) where f : X ′ → X belongs
to the partially ordered set of all birational models of X.)

The total discrepancy and the discrepancy of a pair (X,B) is given
by

total discrepancy(X,B) := inf{a(E;X,B)|E is a prime divisor over X},

discrepancy(X,B) := inf{a(E;X,B)|E is an exceptional prime divisor over X}.
It is easy to see that if total discrepancy(X,B) < −1, then total discrepancy(X,B) =
−∞. We will also write KX′ + BX′ = f ∗(KX + B) and so we define a
b-divisor B = B(X,B) by letting

BX′ = BX′ := f ∗(KX +B)−KX′

so that B = −A.

Definition 2.3. If B ≥ 0, then we say that a pair (X,B) is:

(1) klt (Kawamata log terminal) if total discrepancy(X,B) > −1,
(2) lc (log canonical) if total discrepancy(X,B) ≥ −1,
(3) canonical if discrepancy(X,B) ≥ 0,
(4) terminal if discrepancy(X,B) > 0,
(5) plt if discrepancy(X,B) > −1,
(6) dlt (divisorially log terminal) if bi ≤ 1 and there is a closed sub-

set Z ⊂ X such that (X\Z,B|X\Z) has simple normal crossings
and for any prime divisor E over X with center contained in
Z, we have a(E;X,B) > −1.

Recall that a pair (X,B) has simple normal crossings if X is smooth
and the support of B is a union of smooth divisors meeting transversely.
A log resolution of a pair (X,B) is a proper birational morphism f :
X ′ → X such that the exceptional set Ex(f) is a divisor and (X, f−1

∗ B∪
Ex(f)) has simple normal crossings. To check whether (X,B) is klt/lc,
it suffices to consider a log resolution f : X ′ → X and to check if
a(E;X,B) > −1 (resp. ≥ −1) for all prime divisors E on X ′.

Remark 2.4. it is known that klt singularities are rational i.e. if
f : X ′ → X is a log resolution then f∗ωX′ = ωX and Rif∗OX′ = 0 for
i > 0 [KM98, 5.22].
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Definition 2.5. If (X,B) is a pair and E is a divisor over X such
that a(E;X,B) < −1 (resp. a(E;X,B) ≤ −1), then we say that E
is a non-lc (resp. non-klt) place of (X,B), and the image of E on X
is a non-lc (resp. a non-klt) center. The union of all non-lc (resp.
non-klt) centers is the non-lc locus nlc(X,B), (resp. the non-klt locus
nklt(X,B)).

Definition 2.6. Let (X,B) be a lc pair and D ≥ 0 an effective divisor.
The log canonical threshold of (X,B) with respect to D is

lct(X,B;D) = sup{t ≥ 0|(X,B + tD) is lc}.

Exercise 2.7. Let X be the cone over a rational curve of degree n (resp.
an elliptic curve or a curve of genus g ≥ 2) and f : X ′ → X the blow
up of the vertex with exceptional curve E. Compute the discrepancy
a(E,X, 0).

Exercise 2.8. Show that if (X,B) is a lc snc pair then discrep(X,B)
is the minimum of 1, 1− bi, and 1− bi − bj where Bi ∩Bj 6= ∅.

Exercise 2.9. Show that if total discrepancy(X,B) < −1, then
total discrepancy(X,B) = −∞.

Exercise 2.10. Let (X,B) be log smooth of dimension d. Assume that
B =

∑
biBi and x ∈ Bi for each i. Let X ′ → X be the blow up of

x ∈ X with exceptional divisor E. Show that a(E;X,B) = d−1−
∑
bi.

Exercise 2.11. Suppose that B ≤ B′, where (X,B) and (X,B′) are
log pairs. Show that a(E;X,B) ≥ a(E;X,B′) for any divisor E over
X.

Exercise 2.12. Show that if X is canonical and X ′ → X is a resolu-
tion, then R(KX) ∼= R(KX′).

Exercise 2.13. Show that terminal singularities are canonical but not
viceversa.

Exercise 2.14. Show that klt singularities are lc but not viceversa.

Exercise 2.15. Let X be the cone over an abelian surface. Show that
X is lc but its singularities are not rational.

Exercise 2.16. If (X,B) is plt, show that bBc is a disjoint union of
prime divisors.

Exercise 2.17. Find a log resolution for 3 lines meeting at a point in
the plane and for the cusp y2 − x3 = 0.

Exercise 2.18. Compute lct(C2, 0;D) where D is the cusp y2−x3 = 0.
9



2.2. Kawamata-Viehweg vanishing. Let A be an ample line bun-
dle on a projective variety X and F a coherent sheaf, then by Serre
vanishing H i(F⊗m) = 0 for i > 0 and m � 0. Notice that m here
depends both on X and F . In the case when X is a smooth projective
variety and F = ωX , then by Kodaira vanishing we have

H i(ωX ⊗ A) = 0, ∀i > 0.

Kodaira vanishing was vastly generalized by Kawamata and Viehweg.
Recall that an R-Cartier divisor D on a normal projective variety X is
nef if D · C ≥ 0 for any curve C ⊂ X and D is nef and big if D is nef
and the top self intersection is positive Dd > 0.

Remark 2.19. If D is nef then Dd > 0 if and only if vol(D) > 0.

Theorem 2.20. [Kawamata-Viehweg vanishing] Let X be a smooth
projective variety and B an R-divisor with simple normal crossings
support such that bBc = 0 (so that (X,B) is klt). If N is a Cartier
divisor such that N −KX − B is nef and big, then H i(N) = 0 for all
i > 0.

It is not hard to generalize this result to the relative setting.

Theorem 2.21. [Relative Kawamata-Viehweg vanishing] Let X be a
smooth quasi projective variety and B an R-divisor with simple normal
crossings support such that bBc = 0 (so that (X,B) is klt). If f :
X → Y is a projective morphism and N is a Cartier divisor such that
N −KX −B is f -nef and f -big, then Rif∗(N) = 0 for all i > 0.

Recall that an R-Cartier divisor D is f -nef if D ·C ≥ 0 for any curve
contained in a fiber of f and f -big if D|F is nef and big where F is a
general fiber of f .

Proof (Theorem 2.20 implies Theorem 2.21). Let A be an ample divi-
sor on Y . Assuming for simplicity that X is projective, then (possibly
replacing A by a multiple), we may assume that N + f ∗A−KX −B is
nef and big. By Theorem 2.20, we have H i(N + f ∗A) = 0 for all i > 0.
By Serre vanishing, we may assume that Hj(Rkf∗N ⊗OY (A)) = 0 for
j > 0 and Rkf∗N ⊗OY (A) is generated for k ∈ N. By the Leray spec-
tral sequence, it follows that 0 = H i(N + f ∗A) ∼= H0(Rif∗N ⊗OY (A))
for i > 0. Since Rif∗N ⊗OY (A) is generated, Rif∗N = 0 for i > 0. �

It is also easy to generalize Theorem 2.20 to the klt setting.

Theorem 2.22. [Kawamata-Viehweg vanishing for klt pairs] Let (X,B)
be a projective klt pair. If N is a Cartier divisor such that N−KX−B
is nef and big, then H i(N) = 0 for all i > 0.
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Proof. Consider f : X ′ → X a log resolution. If KX′ + B′ = f ∗(KX +
B), then (X ′, {B′}) is klt and bB′c = −G where G is effective and
exceptional (as (X,B) is klt). But then f ∗N+G−KX′−{B′} = f ∗(N−
KX−B) is nef and big. Therefore, by Theorem 2.20, H i(f ∗N+G) = 0
for i > 0 and by Theorem 2.21 Rif∗(f

∗N +G) = 0 for i > 0. But then

0 = H i(f ∗N +G) = H i(N ⊗ f∗G) = H i(N) for i > 0,

where we used the fact that f∗(f
∗N +G) = N ⊗ f∗G by the projection

formula, and f∗OX(G) = OX as G is effective and exceptional. �

Putting these statements together, one obtains the following result.

Theorem 2.23. Let f : Y → X be a proper morphism of quasi-
projective varieties with (Y,D) a klt pair, N a Q-Cartier Weil divi-
sor on Y such that N ≡ KY + M + D where M is f -big and f -nef
R-Cartier, then Rif∗OY (N) = 0 for i > 0

Theorem 2.24. [Kollár-Shokurov Connectedness Lemma] Let f : X →
Y be a proper morphism of normal varieties with connected fibers and
B a Q-divisor such that −(KX +B) is Q-Cartier, f -nef and f -big. We
write B = B+−B− where B+, B− are effective and B− is f -exceptional.
Then nklt(X,B) ∩ f−1(y) is connected for every y ∈ Y .

Proof. Let ν : X ′ → X be a log resolution and write KX′ + B′ =
ν∗(KX + B), then nklt(X,B) = ν(nklt(X ′, B′)) and so it suffices to
show that nklt(X ′, B′) ∩ (f ◦ ν)−1(y) is connected for every y ∈ Y .
Since −(KX′ + B′) is Q-Cartier, (f ◦ ν)-nef and (f ◦ ν)-big, we may
replace (X,B) by (X ′, B′) and so we may assume that (X,B) is log
smooth.

Let B<1 =
∑

bi<1 biBi and S = bBc − bB<1c. Then Supp(S) =
nklt(X,B). We have a short exact sequence

0→ OX(−bBc)→ OX(−bB<1c)→ OS(−bB<1c)→ 0.

Notice that

−bBc = KX − bKX +Bc = KX − (KX +B) + {KX +B}.
Since −(KX+B) is f -nef and (X, {KX+B} = {B}) is klt, by Theorem
2.21, we have f∗OX(−bBc) = 0 and hence there is a surjection

f∗OX(−bB<1c)→ f∗OS(−bB<1c).
Note that−bB<1c is effective and f -exceptional so that f∗OX(−bB<1c) =
OY . Thus, the composition OY → f∗OS(−bB<1c) is surjective and fac-
tors through f∗OS → Of(S). But then f∗OS → Of(S) is also surjective
so that S → f(S) has connected fibers. �
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Remark 2.25. If (X,B) is a pair such that B ≥ 0 and −(KX +B) is
nef and big, then the above result states that nklt(X,B) is connected.

Remark 2.26. If (X,B) is a pair such that B ≥ 0 and f : X ′ → X
is a proper birational morphism, then the above result states that the
fibers of nklt(X ′, B′)→ X are connected.

Theorem 2.27. Let (X,B) be an lc pair and (X,B0) a klt pair. If
W1 and W2 are non-klt centers of (X,B), then so is every irreducible
component of W1∩W2. It follows that for ony x ∈ X there is a minimal
non-klt center W of (X,B) containing x.

Proof. We may assume that X is affine and W = W1 ∩W2. For sim-
plicity, we will also assume that B is R-Cartier and (X, 0) is klt. Let
Bi be a general divisor containing Wi and µ : X ′ → X a log reso-
lution of (X,B + B0 + B1 + B2). There are divisors Ei ⊂ X ′ that
correspond to non-klt centers of (X,B) with centers Wi. Therefore,
multEiB(X,B) = 1. Let ei = multEi(µ

∗B) and e′i = multEi(µ
∗Bi).

Note that as (X, 0) is klt, ei > 0 and by our assumptions e′i > 0
(whereas multE3−iµ

∗Bi = 0). Let ai = ei/e
′
i, then Ei are non-klt places

for (X, (1− ε)B + ε(a1B1 + a2B2)) for 0 < ε� 1 and

nklt(X, (1− ε)B + ε(a1B1 + a2B2)) = W1 ∪W2.

By the Connectedness Theorem 2.24, for any w ∈ W there are non-klt
places Fi(ε) corresponding to divisors on X ′ with centers contained in
Wi such that F1(ε)∩F2(ε)∩µ−1(w) 6= ∅ for 0 < ε� 1. By finiteness of
µ-exceptional divisors, we may assume that Fi = Fi(ε) does not depend
on ε. By continuity, we may assume that the Fi are also non-klt centers
of (X,B) . But then w ∈ f(F1 ∩F2) is also a non-klt center of (X,B).
If w ∈ W is general, we may assume that f(F1 ∩ F2) = W . �

Exercise 2.28. Prove Theorem 2.27. (Hint, consider pairs of the form
(X, (1− ε)B + ε(B0 + a1B1 + a2B2)).)

Theorem 2.29. Let (X,B) be an lc pair and (X,B0) a klt pair. If W
is a minimal non-klt center of (X,B), then W is normal.

Proof. We may assume that X is affine. Let µ : X ′ → X be a log
resolution of (X,B+B0) such that there is a divisor E on X ′ which is a
non-klt place of (X,B) with center W . Let B′ be a general divisor on X
containing W and e′ = multE(µ∗D′). If e = multE(µ∗B) and a = e/e′,
then E is a non-klt place of (X, (1 − ε)B + εB′). (X, {KX′ + D}) is
klt and −(KX′ + D) ∼Q,X 0 is µ-nef and µ-big, it follows by Theorem
2.21 that R1µ∗OX′(−bDc) = 0 and hence that µ∗OX′(−bD<1c) →
µ∗OE(−bDc<1) is surjective. Since−bD<1c is effective and exceptional,
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µ∗OX′(−bD<1c) = OX′ and so OX′ → µ∗OW is surjective. Thus E →
W has connected fibers and W is normal. �

Exercise 2.30. Fix d ∈ N. Show that for any m > 0 there exists a
projective variety X of dimension d and an ample line bundle A on X
such that H i(X,A⊗m) 6= 0. (Hint: Let d = 1.)

Exercise 2.31. Show that if f : X → Y is a morphism of projective
varieties, N is a nef R-Cartier divisor on Y , then f ∗N is nef on X.
Moreover if N is nef and big, then f ∗N is nef and big iff f is generically
finite (i.e. f is dominant and dimX = dimY ).

2.3. Multiplier ideal sheaves. Let X be a smooth projective variety
and B ≥ 0 an R-divisor on X, then we define the multiplier ideal sheaf
J (X,B) as follows: let f : X ′ → X be a log resolution, then

J (X,B) := f∗OX′(KX′/X − bf ∗Bc)
where KX′/X = KX′ − f ∗KX .

Remark 2.32. We have the following facts:

(1) Since KX′/X is effective and exceptional,

J (X,B) ⊂ f∗OX′(KX′/X) = OX
is an ideal sheaf.

(2) If B is Cartier, then by the projection formula,

J (X,B) = f∗OX′(KX′/X − f ∗B)

= OX(−B)⊗ f∗OX′(KX′/X) = OX(−B).

(3) More generally, J (X,B) = J (X, {B})⊗OX(−bBc).
(4) If (X,B) is snc, then J (X,B) = OX(−bBc) for any choice of

log resolution X ′ → X.
By the previous point it suffices to show that J (X, {B}) =
OX i.e. we may assume that bBc = 0. we must then show that
KX′/X −bf ∗Bc ≥ 0 or equivalently multE(KX′/X −f ∗B) > −1.
This can be checked by a computation in local coordinates say
x1, . . . , xd on X and y1, . . . , yd near the generic point of a divisor
E on X ′. If ci = multE(f ∗Bi), then xi = yci1 · bi where bi is a
regular function and, Bi is defined by xi = 0 and E by y1 = 0.
Since dxi = yci−1

1 cibidy1 + yci1 dbi, we have

dx1 ∧ . . . ∧ dxn = yγ−1
1 gdy1 ∧ . . . ∧ dyn

where g is a regular function and γ =
∑
ci. But then

multE(KX′/X) ≥
∑

ci − 1 > multE(f ∗B)− 1.

13



(5) The definition of J (X,B) is independent of the choice of the
log resolution X ′ → X.

To see this, suppose that ν : X ′′ → X ′ is a birational mor-
phism. By the previous point,

ν∗OX′′(KX′′/X′ − bν∗f ∗Bc) = J (X ′, f ∗B) = OX′(−bf ∗Bc).

But then by the projection formula

(f◦ν)∗OX′′(KX′′/X−bν∗f ∗Bc) = f∗(KX′/X⊗ν∗OX′′(KX′′/X′−bν∗f ∗Bc)) =

f∗(KX′/X ⊗OX′(−bf ∗Bc)).
(6) If multx(B) ≥ dimX, then J (X,B) ⊂ mx. To see this, let

f : X ′ → X be a log resolution and let E be the divisor on X ′

corresponding to the blow up of x ∈ X. Then multE(KX′/X −
f ∗B) ≤ −1 and so KX′/X−bf ∗Bc ≤ −E. But then J (X,B) =
f∗OX′(KX′/X − bf ∗Bc) ⊂ f∗OX′(−E) = mx.

(7) If multx(B) < 1, then J (X,B) = OX (near x ∈ X). See
Corollary 2.38

Theorem 2.33 (Nadel vanishing). Let X be a smooth projective va-
riety and B ≥ 0 an effective R-divisor and f : X → Z a projective
morphism. If N is a Cartier divisor on X such that N − B is f -nef
and f -big, then

Rif∗ (OX(KX +N)⊗ J (X,B)) = 0, for i > 0.

Proof. Let ν : X ′ → X be a log resolution of (X,B), then ν∗(N − B)
is f ′-nef and f ′-big where f ′ = f ◦ ν. By Theorem 2.21, we have
Riν∗OX′(KX′+dν∗(N−B)e) = 0 for i > 0 and Rif ′∗OX′(KX′+dν∗(N−
B)e) = 0 for i > 0. Note that

Rif ′∗OX′(KX′ + dν∗(N −B)e) = Rif∗(OX(KX +N)⊗ J (X,B))

vanishes for i > 0. �

Corollary 2.34. Let X be a smooth projective variety, B ≥ 0 an
effective R-divisor N a Cartier divisor such that N − B is nef and
big and H a very ample divisor, then OX(KX + N + nH) ⊗ J (D) is
generated for any n ≥ dimX.

Proof. This follows immediately from Lemma 2.35 below. �

Lemma 2.35. Let F be a coherent sheaf on a smooth projective variety
and H a very ample line bundle such that H i(F ⊗ OX(jH)) = 0 for
i > 0 and 0 ≤ j ≤ d = dimX, then F is globally generated.
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Proof. We must show that F is generated at x ∈ X. Let F ′ ⊂ F be the
biggest subsheaf with 0 dimensional support. There is a short exact
sequence

0→ F ′ → F → F ′′ → 0

where F ′′ has no sections supported at points. SinceH i(F ′⊗OX(jH)) =
0 for i > 0, it follows that H i(F ′′ ⊗ OX(jH)) = 0 for i > 0 and
0 ≤ j ≤ d = dimX. It is easy to see that F is generated iff so is
F ′′. We may therefore replace F by F ′′ and hence assume that F
has no sections supported at points. Pick Y ∈ |H| a general element
containing x ∈ X and consider the induced short exact sequence

0→ F ⊗OX(−Y )→ F → F|Y → 0.

It is easy to see that H i(F|Y ⊗ OX(jH|Y )) = 0 for i > 0 and 1 ≤
j ≤ d = dimY . By induction on the dimension, F|Y ⊗ OX(jH|Y ) is
generated for any j ≥ dimX. Since H0(F|Y ⊗OX(jH|Y ))→ H0(F|Y ⊗
OX(jH|Y )) is surjective, it follows that F is generated at x as required.

�

We next investigate how multiplier ideals behave under restriction
to a divisor. Suppose that H ⊂ X is a smooth divisor on a smooth
variety, then it may happen that for an effective Q-divisor D we have
J (H,D|H) ⊂ J (X,D) · OH . consider in fact H = {x = 0} ⊂ X = C2.
If D = 1

2
{x− y2 = 0}, then J (X,D) = OX , however J (H,D|H) = mO

where O ∈ H is the origin. We think of this as saying that (H,D|H) is
more singular than (X,D). The next result shows that (H,D|H) is at
least as singular as (X,D).

Theorem 2.36. Let H ⊂ X be a smooth divisor on a smooth variety
and D ≥ 0 a Q-divisor whose support does not contain H. Then

J (H,D|H) ⊂ J (X,D) · OH
where J (X,D) · OH := Im (J (X,D) ↪→ OX → OH) ⊂ OH .

Moreover, if 0 < s < 1, then for all 0 < t� 1, we have

J (X,D + (1− t)H) · OH ⊂ J (H, (1− s)D|H).

Proof. Let f : X ′ → X be a log resolution of (X,D + H) and write
f ∗H = H ′ +

∑
ajEj where H ′ = f−1

∗ H, aj ≥ 0 and Ej are f -
exceptional. By adjunction KH′ = (KX′ + H ′)|H′ and KH = (KX +
H)|H . Thus KH′/H = (KX′/X −

∑
ajEj)|H′ . Consider the short exact

sequence

0→ OX′(KX′/X − bf ∗Dc − f ∗H)→ OX′(KX′/X − bf ∗Dc −
∑

ajEj)

→ OH′(KH′/H − bf ∗D|Hc)→ 0.
15



Since −bf ∗Dc − f ∗H ∼Q,f {f ∗D} and (X ′, {f ∗D}), it follows by The-
orem 2.21 that R1f∗OX′(KX′/X − bf ∗Dc − f ∗H) = 0 and so

f∗OX′(KX′/X−bf ∗Dc−
∑

ajEj)→ f∗OH′(KH′/H+bf ∗D|Hc) = J (H,D|H)

is surjective. The first assertion now follows since

J (X,D) = f∗OX′(KX′/X−bf ∗Dc) ⊃ f∗OX′(KX′/X−bf ∗Dc−
∑

ajEj).

Since

J (X,D + (1− t)H) = f∗OX′(KX′/X − bf ∗(D + (1− t)H)c)
and

J (H, (1− s)D|H) = f∗OH′(KH′/H − b(1− s)f ∗D|Hc),
we must show that for any divisor E on X ′ such that E ∩H ′ 6= ∅, we
have that for any irreducible component V of E∩H ′, if multV (KH′/H−
f ∗((1− s)D|H)) ≤ −1, then

multE(KX′/X−bf ∗(D+(1−t)H)c) ≤ multV (KH′/H−b(1−s)f ∗D|Hc).
Let k = multE(KX′/X), a = multE(f ∗H) and d = multE(f ∗D), then
we must show that

k − b(1− t)a+ dc ≤ k − a− b(1− s)d)c.
But for 0 < t� 1 this equation is easily seen to hold. �

We have the following important consequence relating singularities
on X and H.

Corollary 2.37. Let X,H,D be as above. Then

(1) (Inversion of adjunction) If J (H,D|H) = OH near a point x ∈
H, then J (X,D) = OX near x ∈ X. In other words if (H,D|H)
is klt near x ∈ H then (X,D) is klt near x ∈ X.

(2) (Inversion of adjunction II) If J (H, (1−s)D|H) ⊂ mx for some
point x ∈ H and 0 < s < 1, then J (X,D + (1 − t)H) ⊂ mx

for any 0 < t� 1. In other words if (H, (1− s)D|H) is not klt
near x ∈ H, then (X,D + (1− t)H) is not klt near x ∈ X.

Proof. Exercise. �

Corollary 2.38. If X is smooth and D is an effective Q-divisor such
that multx(D) < 1, then J (X,D) = OX near x ∈ X.

Proof. By induction on d = dimX. The case d = 1 is clear since
then J (X,D) = OX(−bDc) = OX . If d > 1, then pick x ∈ H ⊂ X
a general very ample divisor so that H is smooth and not contained
in the support of D. We have multx(D|H) = multx(D) < 1 and so
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by induction J (H,D|H) = OH near x. By Corollary 2.38, we have
J (X,D) = OX near x ∈ X. �

Remark 2.39. A more general version of inversion of adjunction is
the following. Let (X,S + B) be a pair such that S is a prime divisor
not contained in the support of B, let ν : S ′ → S be the normalization
of S and (S ′, BS′) be the log pair defined by the adjunction formula
ν∗(KX + S +B) = KS′ +BS′. Then

(1) (X,S +B) is purely log terminal near S if and only if (S ′, BS′)
is kawamata log terminal.

(2) (X,S +B) is log canonical near S if and only if (S ′, BS′) is log
canonical.

Proposition 2.40. If X is smooth, Z ⊂ X an irreducible d-dimensional
subvariety and D is an effective Q-divisor such that

(1) Z is a non-klt center of (X,D),
(2) (X,D) is lc along the general point of Z,
(3) Supp(B) does not contain Z, and
(4) multz(B|Z) > d at a smooth point z ∈ Z.

Then, for any 0 < ε� 1 we have

J (X, (1− ε)D +B) ⊂ mz.

Proof. Consider f : X ′ → X a log resolution of (X,D), then there
is a divisor E on X ′ with center Z such that aE(X,D) = −1. If
k = multE(KX′/X), then multE(f ∗D) = k + 1. Since z ∈ Z is general,
we may assume that f |E is smooth over z. We have

J (X, (1− ε)D +B) = f∗J (X ′, f ∗((1− ε)D +B)−KX′/X).

Since multE(B|Z) > d, it follows that

multEz(f
∗((1− ε)D +B)−KX′/X) ≥ d+ 1 = codimYEz,

where Ez is the fiber of E → Z over z ∈ Z. Thus J (X ′, f ∗((1− ε)D+
B)−KX′/X) ⊂ IEz and the proposition follows. �

Exercise 2.41. Show that (X,B) is klt iff J (X,B) = OX .

Exercise 2.42. Show that if (X,S + B) is purely log terminal (resp.
log canonical) near S, then (S ′, BS′) is kawamata log terminal (resp.
log canonical).

Exercise 2.43. Use the Connectedness lemma to show that if (S ′, BS′)
is kawamata log terminal, then (X,S + B) is purely log terminal near
S.
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2.4. Adjoint ideals.

Definition 2.44. Let (X,S) be a log smooth pair where S is a reduced
irreducible divisor and D be an effective R-divisor whose support does
not contain S. Let f : Y → X be a log resolution of (X,S + D). We
define the adjoint ideal

JS,D = f∗OY (KY/X + f−1
∗ S − bf ∗(D + S)c).

Exercise 2.45. Show that JS,D is independent of the chosen log reso-
lution.

Exercise 2.46. Show that J (X,S +D) ⊂ JS,D ⊂ J (X,D).

Proposition 2.47. Let (X,S) be a log smooth pair where S is a reduced
irreducible divisor and D be an effective R-divisor whose support does
not contain S. There is a short exact sequence

0→ J (X,S +D)→ JS,D → J (S,D|S)→ 0.

Proof. Let f : Y → X be a log resolution of (X,S + D) and consider
the short exact sequence

0→ OY (KY/X−bf ∗(D+S)c)→ OY (KY/X+S ′−bf ∗(D+S)c)→ OS′(KS′/S−bf |S′∗(D|S)c)→ 0,

where S ′ = f−1
∗ S, KS = (KX + S)|S, and KS′ = (KY + S ′)|S′ . By

Theorem 2.21, we have R1f∗OY (KY/X − bf ∗(D + S)c) = 0 and hence
the proposition follows simply by pushing forward via f the above short
exact sequence on Y . �

Corollary 2.48. Let (X,S) be a log smooth pair where S is a reduced
irreducible divisor and D be an effective R-divisor whose support does
not contain S. If L is a Cartier divisor such that L− (KX +D+S) is
nef and big, then

H0(L|S ⊗ J (S,D|S)) ⊂ Im
(
H0(L)→ H0(L|S)

)
.

Proof. By Theorem 2.20, H1(L⊗J (X,S +D)) = 0 and so by Propo-
sition 2.47, H0(L⊗JS,D)→ H0(L|S ⊗J (S,D|S)) is surjective and the
corollary follows. �

Lemma 2.49. Let X be a smooth variety, D,D′ an effective R-divisor
and Σ be an effective Cartier divisor such that D ≤ Σ + D′ and
J (X,D′) = OX , then OX(−Σ) ⊂ J (D).

Proof. Let f : Y → X be a log resolution of (X,D + D′ + Σ). Since
−f ∗D ≥ −f ∗(Σ + D′) and f∗OY (KY/X − bf ∗D′c) = J (X,D′) = OX ,
by the projection formula we have

J (X,D) = f∗OY (KY/X − bf ∗Dc) ⊃ f∗OY (KY/X − bf ∗(Σ +D′)c) =
18



f∗OY (KY/X − bf ∗D′c)⊗OX(−Σ) = OX(−Σ).

�

2.5. Deformation invariance of plurigenera.

Theorem 2.50. Let f : X → T be a smooth morphism of smooth
quasi-projective varieties such that KX/T is pseudo-effective and H an
ample divisor. Then H0(Xt,OXt(mKXt+Ht)) is deformation invariant
for all t ∈ T and m ≥ 0.

If moreover KXt is big for some t ∈ T , then H0(Xt,OXt(mKXt)) is
deformation invariant for all t ∈ T and m ≥ 1.

Proof. The question is local over T so we may assume that T is affine.
Cutting by general hyperplanes in T we may assume that dimT = 1.
Pick t ∈ T , we must show that f∗OX(mKX +H)→ H0(OXt(mKXt +
Ht)) is surjective. Here Xt = f−1(t) is the fiber over t and Ht = X|Xt .
Pick Σ ∈ |mKXt +Ht| and A such that |rKXt + At| is free and

|rKXt +Ht + At| = |rKX +H + A|t ∀ 0 ≤ r ≤ m.

Here At = A|Xt and |rKX+H+A|t denotes the image of the restriction
map |rKX + A| → |rKXt + At|.

We will first show that

kΣ+ |rKXt +At| ⊂ |k(mKX +H)+ rKX +A|t ∀k ≥ 0, 1 ≤ r ≤ m.

We proceed by induction on l = mk + r. By assumption, the cases
0 ≤ l ≤ m hold. Assume that the above inclusion holds for all integers
< l = mk+r where 1 ≤ r ≤ m, in particular for a very general element
U ∈ |(r−1)KXt+At| there exists a divisor S ∈ |(mk+r−1)KX+kH+A|
such that S|Xt = kΣ+U . Since KX/T is pseudo-effective over T , for any
δ > 0 there exists an effective Q-divisor D ∼Q KX/T + δA. Consider
now the divisor G = (1− ε)S + ε(mk + r − 1)D, then

(mk + r − 1)KX + kH + A−G ∼Q ε(kH − (1− (mk + r − 1)δ)A)

is ample (for 0 < δ � 1) and so by Corollary 2.48 H0(OXt(((mk +
r)KXt+kHt+At)⊗J (G|Xt))) is contained in the image of the restriction
map

H0(OX((mk+r)KX +kH+A))→ H0(OXt((mk+r)KXt +kHt+At)).

Since J (Xt, ε(mk + r − 1)Dt) = OXt for 0 < ε � 1 and since U is a
general smooth divisor intersecting Dt transversely, we have

J (Xt, (1− ε)U + ε(mk + r − 1)Dt) = OXt .
Since Gt ≤ kΣ + (1− ε)U + ε(mk + r − 1)Dt, then by Lemma 2.49,

J (G|Xt) = J ((1− ε)(kΣ + U) + ε(mk + r − 1)DXt) ⊃ OXt(−kΣ)
19



and so for any U ′ ∈ |rKXt +A|, we have that kΣ+U ′ ∈ |(mk+r)KX +
kH + A|t as required. The induction is complete.

Consider now an element D ∈ |k(mKX + H) + A| such that Dt =
kΣ + U where U ∈ |At| is general. Since

(m− 1)KX +H − m− 1

mk
D ∼Q

1

m
(H − m− 1

k
A)

is ample for k � 0, by Corollary 2.48 we have that H0(OXt(mKXt +
Ht)⊗ J (m−1

mk
D|Xt)) is contained in the image of the homomorphism

H0(OX(mKX +H))→ H0(OXt(mKXt +Ht)).

Since m−1
mk

D|Xt ≤ Σ + m−1
mk

U and J (Xt,
m−1
mk

U) = OXt for k � 0,

by Lemma 2.49 we have J (m−1
mk

Dt) ⊂ OXt(−Σ), it follows that Σ ∈
|mKX +H|t.

Suppose now thatKXt is big for some t ∈ T . SinceH0(Xt,OXt(mKXt+
Ht)) is deformation invariant for all t ∈ T and m ≥ 0, it follows
easily that KXt is big for all t ∈ T and KX is big over T . Let
Σ ∈ |mKXt | and consider an element D ∈ |kmKX + A| such that
Dt = kΣ + U where U ∈ |At| is general. Since KX is big over T , we
may write (m − 1)KX ∼Q A′ + E where A′ is ample and E ≥ 0. Let

G = (1−ε)(m−1)
mk

D + εE, then

(m− 1)KX −G ∼Q εA
′ − (1− ε)(m− 1)

mk
A

is ample for k � 0. By corollary 2.48, H0(OXt(mKXt) ⊗ J (G|Xt))
is contained in the image of H0(mKX) → H0(mKXt). Since G|Xt ≤
Σ + (1−ε)(m−1)

mk
U + εEt where (X, (1−ε)(m−1)

mk
U + εEt) is klt, it follows by

Lemma 2.49 that Σ ∈ |mKX |t as required. �

Remark 2.51. Y.T. Siu has shown that if f : X → T is a smooth
morphism of smooth quasi-projective varieties, then h0(mKXt) is inde-
pendent of t ∈ T . The proof is analytic and there is no known algebraic
proof of this fact.

2.6. Fujita’s Conjecture and the Theorem of Anhern and Siu.

Conjecture 2.52. [Fujita’s Conjecture] Let X be a smooth projective
variety and A an ample divisor on X, then KX + tA is generated for
any integer t > dimX.

The above result is known in dimension ≤ 5 by results of Kawamata
[Kawamata97] and Ye-Zhu [YZ15]. In what follows we will prove several
closely related statements.
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Theorem 2.53. Fujita’s Conjecture holds if A is ample and globally
generated.

Proof. For simplicity let t = n + 1 where n = dimX. Since A is
generated, it defines a finite (onto its image) morphism f : X → Pn
such that f ∗OPn(1) ∼= A. Fix x ∈ X we wish to show that KX +
(n + 1)A is generated at x. Pick general hyperplanes A1, A2, A3, . . .
passing through f(x). For k � 0 consider Dk = n

k
(A1 + . . . + Ak). It

is easy to see that multx(Dk) ≥ dimX and multy(Dk) < 1 for y 6= x
in a neighborhood of x ∈ X. But then by Remark 2.32, we have that
the support of OX/J (Dk) has a component supported at x so that
ml
x ⊂ OX/J (Dk) ∼= IZ ⊂ mx near x ∈ X for some l > 0. Since

(n+ 1)A−Dk is ample, by Theorem 2.33 we have H1(OX(KX + (n+
1)A)⊗ J (Dk)) = 0. From the short exact sequence

0→ OX(KX + (n+ 1)A)⊗ J (Dk)→ OX(KX + (n+ 1)A)

→ OX(KX + (n+ 1)A)⊗OX/J (Dk)→ 0

we see that

H0(OX(KX + (n+ 1)A))→ H0(OX(KX + (n+ 1)A)⊗OX/J (Dk))

is surjective. Since H0(OX(KX + (n + 1)A) ⊗ OX/IZ) is a summand
of H0(OX(KX + (n + 1)A) ⊗ OX/J (Dk)) and since the short exact
sequence

0→ OX(KX + (n+ 1)A)⊗mx/IZ → OX(KX + (n+ 1)A)⊗OX/IZ
→ OX(KX + (n+ 1)A)⊗OX/mx → 0

induces a short exact sequence of global sections, it follows that

H0(OX(KX + (n+ 1)A))→ H0(OX(KX + (n+ 1)A)⊗OX/mx)

is surjective and hence KX + (n+ 1)A is generated at x ∈ X. �

Exercise 2.54. Show that multy(Dk) < 1 for y 6= x in a neighborhood
of x ∈ X.

Theorem 2.55. Fujita’s Conjecture holds in dimension 2.

Proof. Since A is ample, by Serre vanisghing and Riemann Roch, for
k � 0

h0(kA) = χ(kA) =
kA(kA−KX)

2
+ χ(OX) = k2A

2

2
+O(k).

Vanishing to order m at a smooth point x ∈ X of a surface is imposed
by ≤

(
m+1

2

)
conditions. Thus, for any ε > 0 and for k � 0, there is

divisor Dk ∈ |kA| such that multx(Dk) > k(1− ε). Let

λ = lctx(X,
Dk

k
) = sup{t > 0|(X, tDk

k
) is lc at x ∈ X}.
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Notice that by Remark 2.32, we have λ < 2/(1−ε). By Nadel vanishing,
since 3 > λ, it follows that if D = λ

k
Dk, then

H0(OX(KX + 3A))→ H0(OX(KX + 3A)⊗OX/J (X,D))

is surjective and hence that KX + 3A is generated at x ∈ X (since
OX(KX+3A)⊗OX/mx is a summand ofOX(KX+3A)⊗OX/J (X,D)).

Suppose now that x is not a minimal non-klt center of (X,D), then
the minimal non-klt center is a curve x ∈ C ⊂ X which is normal and
hence smooth at x ∈ X. This means that D = C +D′ where C is not
contained in the support of D′ and multx(D

′) < 1. Let f : X ′ → X be
a log resolution and C ′ = f−1

∗ C. Consider the short exact sequence

0→ OX′(KX′ + 3f ∗A− bf ∗Dc)→ OX′(KX′ + C ′ + 3f ∗A− bf ∗Dc)

→ OC′(KC′ + 3f ∗A− bf ∗Dc)→ 0.

By Kawamata-Viehweg vanishing we obtain a short exact sequence

0→ H0(OX(KX+3A)⊗J (X,D))→ H0(f∗OX′(KX′+C
′+3f ∗A−bf ∗Dc))

→ H0(f∗OC′(KC′ + 3f ∗A− bf ∗Dc))→ 0.

We claim that deg(LC′) ≥ 2 where LC′ = 3f ∗A − bf ∗Dc and hence
KC′ + LC′ is generated. Grant this for the time being, then since
C ′ → C is an isomorphism near x ∈ C, we have that f∗OC′(KC′ +
3f ∗A − bf ∗Dc) is locally free and generated near x ∈ C and so the
same holds for f∗OX′(KX′ + C ′ + 3f ∗A− bf ∗Dc). But then KX + 3A
is generated near x ∈ X.

We have 3f ∗A− bf ∗Dc ∼Q (3− λ)f ∗A + {λf ∗D} and hence LC′ =
(3f ∗A−bf ∗Dc)|C′ is a Cartier divisor of positive degree and it suffices to
show that deg((3−λ)f ∗A+{f ∗D})|C′ > 1. Since multx(Dk/k) > (1−ε),
it follows that multx({λf ∗Dk}) ≥ λ(1− ε)− 1 (since bf ∗Dc = C ′ near
x ∈ C ′). But then deg(LC′) ≥ λ(1−ε)−1+3−λ > 1 for 0 < ε� 1. �

The next result implies that Fujita’s conjecture holds for t >
(
n+1

2

)
.

Theorem 2.56 (Anhern-Siu). Let X be a smooth projective n-dimensional
variety and A be an ample line bundle such that

AdimZ · Z >

(
n+ 1

2

)dimZ

for any subvariety x ∈ Z ⊂ X, then KX + A is generated at x ∈ X.

Proof. As we have seen above, it suffices to show that there exists a
Q-divisor D > 0 such that

(1) x is an isolated point of the support of OX/J (D) and
(2) D ∼Q cA for some c < 1.
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The first step is to produce a divisor D with J (D) ⊂ mx. This can be
achieved by the following easy argument.

Lemma 2.57. Let x ∈ V be a smooth point on an irreducible d−dimensional
projective variety and A an ample divisor such that Ad > ad for some
number a > 0. Then for any k � 0 there exists a divisor Ak ∈ |kA|
such that multx(Ak) > ka.

Proof of Lemma 2.57. By Riemann-Roch, we have

h0(OV (kA)) =
kdAd

d!
+O(kd−1).

Vanishing to order m at the smooth point x ∈ V imposes at most(
d+m− 1

d

)
=
md

d!
+O(md−1)

independent conditions. The lemma follows easily. �

Since by assumption An >
(
n+1

2

)
, it follows that there exists a divisor

D1 ∼Q c1A with multx(D1) ≥ n and c1 < n/
(
n+1

2

)
. Replacing D1 by

λD1 where

λ = lctx(X, 0;D1) = sup{t > 0|(X, tD1) is lc at x ∈ X} ≤ 1,

we may assume that (X,D1) is lc but not klt at x ∈ X. Perturbing
D1, we may assume that in fact (X,D1) has a unique non-klt center
through x ∈ X. Thus J (X,D1) = IZ1 ⊂ mx locally near x ∈ X. We
will now show by induction that for any k > 0 there exists an effective
Q-divisor Dk ∼ ckA such that

(1) (X,Dk) is lc but not klt at x ∈ X,
(2) (X,Dk) has a unique non-klt center x ∈ Zk ⊂ X of dimension

dimZk ≤ n− k, and

(3) ck <
(∑k

i=1(n− i+ 1)
)
/
(
n+1
n

)
.

Note that the case k = 1 was established above. Assume now that the
claim holds for all integers ≤ k. Consider the normalization of a general
curve in Zk passing through x ∈ Zk say g : T → X with g(t0) = x.
For general t ∈ T , g(t) is a smooth point on Zk and hence there is a
divisor Gt ∼ gtA|Zk such that multg(t)(Gt) > dimZk and gt < k/

(
n+1
n

)
.

By Serre vanishing

H0(OX(tA))→ H0(OZk(tA))

is surjective for t � 0 and so there is a Q-divisor G̃t on X such that
G̃t ∼ gtA and G̃t|Zk = Gt. By Proposition 2.40, it follows that J ((1−
δ)Dk + Gt) ⊂ mg(t) and the cosupport of J ((1− δ)Dk + Gt) at g(t) is
strictly contained in Zk. It then follows that
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Claim 2.58. There exists a divisor Gt0 ∼ gA|Zk such that J ((1 −
δ)Dk + Gt0) ⊂ mx and the cosupport of J ((1 − δ)Dk + Gt0) at x is
strictly contained in Zk.

The proof of this claim is a lengthy exercise. Granting the claim
then, after multiplying (1 − δ)Dk + Gt0 by its log canonical threshold
at x ∈ X and peturbing it so that there is a unique non-klt center at
x ∈ X, we obtain the required Dk+1.

�

Exercise 2.59. Let X be a smooth projective variety and B ≥ 0 a
Q-divisor. Suppose that OX/J (X,B) is supported on Z ⊂ X and
that D ∈ V is a general element of a linear series whose base locus is
contained in Z. Then for any t < 1 whe have that OX/J (X,B + tD)
is supported on Z ⊂ X.

Exercise 2.60. Let T be a normal curve, g : T → X a a morphism to
a smooth projective variety, B ≥ 0 an effective Q-divisor on X and G
a Q-divisor on X. Suppose that for any t ∈ T \ {t0} there is a divisor
Gt ∼Q G such that mg(t) ⊂ J (X,B +Gt), then mg(0) ⊂ J (X,B +G0)
for some G0 ∼Q G.

3. Boundedness of varieties of general type

The goal of this section is to prove the following result.

Theorem 3.1. Fix d ∈ N. Then there exists an integer m = md

depending only on d such that if X is a smooth d-dimensional projective
variety, then |kKX | is birational for all k ≥ m.

We begin with a few preparations.

3.1. Kawamata sub-adjunction.

Theorem 3.2 (Kawamata subadjunction). Let (X,B0) be a klt pair
and V be a non-klt center of a pair (X,B) which is minimal on a
neighborhood of its generic point ηV ⊂ U ⊂ X. Assume that (X,B) is
lc at ηV , then for any ample Q-divisor H, we have

(KX +B +H)|V ν = KV ν +BV ν

where V ν → V is the normalization and the pair (V ν |U , BV ν |U) is klt

Proof. See [Kawamata98]. �

We illustrate the above result with the following basic example. Let
(X,S + B) be a plt surface pair so that bS + Bc = S. Then S is a
minimal log canonical center and in particular it is a smooth curve. Let
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f : X ′ → X be a log resolution of (X,S+B) and write KX′+S ′+B′ =
f ∗(KX+S+B) where S ′ = f−1

∗ S. Let KS′+BS′ = (KX′+S
′+B′)|S′ =

KS′ + BS′ and KS + BS = (f |S′)∗(KS′ + BS′ (note that f |S′ is an
isomorphism). We have

KS +BS = (KX + S +B)|S,
where (S,BS) is klt.

From the classification of PLT surface sinularities, one can check that

the coefficients of BS are of the form 1− 1−
∑
kibi

n
∈ [0, 1) where bi are

coefficients of B and ki ∈ N. It is easy to see that if the coefficients of
B lie in a DCC set, then so do the coefficients of BS.

3.2. Easy addition.

Theorem 3.3. Let f : X → T be a morphism of smooth complex
projective varieties, then κ(X) ≤ κ(Xt) + dimT where Xt is a general
fiber.

Proof. Let g : X → Z be the Iitaka fibration. Replacing X by an
appropriate birational model, we may assume that g is a morphism.
By definition dimZ = κ(X) and KX ∼Q g

∗A+ E where E is effective
and A is ample. It is easy to see that

κ(Xt) ≥ dim(g(Xt)) ≥ dimXt−dim(X/Z) = dimZ−dimT = κ(X)−dimT.

�

Corollary 3.4. Let f : Z → T be a projective morphism and g : Z →
X be a dominant morphism to a variety of general type, then Xt is a
variety of general type for general t ∈ T .

Proof. Replacing X,Z, T by appropriate birational models, we may
assume thatX,Z, T are smooth (recall that by definitionX is of general
type if so is any of its resolutions). Cutting by general hyperplanes on
T , we may assume that g is generically finite (i.e. that dimZ = dimX).
Since g is generically finite, KZ = g∗KX + R where R ≥ 0 is the
ramification divisor and so Z is of general type. By Theorem 3.3

dimZ = κ(Z) ≤ κ(Zt) + dimT

and so dimZt ≤ κ(Zt) i.e. Zt is of general type. �

3.3. Finite generation of the canonical ring. We recall the follow-
ing result from [BCHM10]

Theorem 3.5. Let f : X → T be a projective morphism and (X,B) a
klt pair such that B ≥ 0 is a Q-divisor. Then the pluricanonical ring

R(KX +B/Z) = ⊕m≥0f∗OX(m(KX +B))
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is a finitely generated OT module.

Remark 3.6. If X is projective and KX + B is big, then Xcan :=
ProjR(KX+B) is a projective variety and φ : X 99K Xcan is a birational
morphism which we may think of as follows. Let m > 0 be sufficiently
divisible so that R(KX +B) is generated in degree m, then φ is defined
by the linear series |mKX | so that Xcan ⊂ PN = |mKX |. If p : X ′ → X
is a log resolution of |mKX | so that |p∗m(KX + B)| = M + F where
F is the fixed divisor and M is base point free, then M defines the
morphism q : X ′ → Xcan and we have

M = q∗OXcan(1) = q∗OXcan(m(KXcan +BXcan))

where BXcan = f∗B. In particular KXcan +BXcan is an ample Q-Cartier
divisor and

p∗(KX +B) = q∗(KXcan +BXcan) +
F

m
.

It follows easily that (Xcan, BXcan) has klt singularities. It is expected
that pluricanonical rings of lc pairs are also finitely generated.

Definition 3.7. Let f : X → T be a projective morphism and (X,B ≥
0) be a lc pair such that KX + B is ample over T then we say that
(X,B) is a log canonical model over T . If KX + B is nef over T then
we say that (X,B) is a weak log canonical model over T .

Exercise 3.8. Show that if X is projective and KX + B is big, then
Xcan is birational to X.

Exercise 3.9. Show that if (X,B) is klt then so is (Xcan, BXcan).

Exercise 3.10. Show that if X is projective and KX is big and canon-
ical, then Xcan has canonical singularities (this is of course not true if
X does not have canonical singularities).

3.4. Proof of Theorem 3.1. Tsuji’s observation is that in order to
prove Theorem 3.1, it suffices to prove the apparently weaker result

Theorem 3.11. Fix d ∈ N. Then there exists constants A,B > 0
depending only on d such that if X is a smooth d-dimensional projective
variety, then |kKX | is birational for all

k ≥ A

(vol(KX))1/d
+B.

Claim 3.12. Theorem 3.11 implies Theorem 3.1
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Proof. If vol(KX) > 1, then we may pick m = dA+Be. Therefore, we
may assume that vol(KX) ≤ 1. Let r = d A

v1/d
+Be where v = vol(KX),

then Z = φr(X) ⊂ |rKX | is a variety of degree rdv ≤ (A + B + 1)d.
By a Hilbert scheme argument, there exists a projective morphism of
quasi-projective varieties Z → T such that if X is a smooth projective
variety of dimension d and volume vol(KX) ≤ 1, then X is birational
to a fiber Zt for some t ∈ T . We replace T by the closure of the
points t ∈ T such that Zt is birational to a smooth projective variety
of dimension d and volume vol(KX) ≤ 1. Replacing T by a union of
locally closed subsets and passing to a log resolution, we may assume
that the fibers Zt are smooth. By Siu’s theorem on the deformation
invariance of plurigenera, we may assume that vol(Zt) is constant on
all connected components of T . It follows that there is a minimum
value for vol(Zt) say vd. But then we may pick m = d A

v
1/d
d

+Be. �

By a similar argument, we also have

Claim 3.13. Theorem 3.1 implies Theorem 1.19.

Proof. We begin by showing that Vd is discrete. It suffices to show
that Vd ∩ [0, L] is discrete for any L > 0. Arguing as above, we may
assume that there is a smooth projective morphism f : Z → T such
that the fibers Zt parametrizes all smooth d-dimensional projective
varieties of general type with vol(KX) ≤ L. Since vol(Zt) is constant
on all connected components of T , the claim follows.

(1) now follows since Vd has a minimal positive element say vd > 0
and as observed above we may pick m = d A

v
1/d
d

+Be.
Consider now X = ProjT (R(KZ)). Since for any t ∈ T we have

f∗OZ(mKZ)→ H0(mKZt), is surjective, it follows that Xt ∼= Proj(R(KXt)).
This is (3). �

Proof of Theorem 3.1. We claim that it suffices to show that for any
two distinct very general points x, y ∈ X, there exists an effective Q-
divisor Dx,y such that:

(1) Dx,y ∼Q λKX where λ < A
vol(KX)1/d

+B − 1;

(2) x is an isolated point of the co-support of J (Dx,y) and y is
contained in the co-support of J (Dx,y).

To see the claim, note that KX is big and so we may pick m > 0
such that mKX ∼ G + H where H is ample and G ≥ 0. We may
assume that x, y are not contained in the support of G and we let
D′x,y = Dx,y + r−1−λ

m
G. It follows that (r − 1)KX −D′x,y ∼Q

r−1−λ
m

H is

ample, so that by Theorem 2.33 H1(X,ω⊗mX ⊗J (D′x,y)) = 0. Consider
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the short exact sequence

0→ ω⊗mX ⊗ J (D′x,y)→ ω⊗rX → Q→ 0,

which induces a surjection

H0(X,ω⊗rX )→ H0(X,Q).

Since x is an isolated point of the co-support of J (D′x,y), Q has a
summand say Qx supported at x and hence admitting a surjection
Qx → C(x). Since y is also contained in the co-support of Q, one sees
that there is a section of ω⊗rX vanishing at y but not at x. Thus |rKX |
defines a birational map and the claim now follows.

In what follows, we will show that there is a divisor Dx ∼Q λKX

where λ < A
vol(KX)1/d

+ B − 1 and x is an isolated point of the co-

support of J (Dx). The argument for producing the divisor Dx,y is
similar and we refer the reader to [Tsuji07] or [Takayama06] for the
details. For simplicity, we will also assume that KX is ample. This can
be achieved replacing X by its canonical model. Of course, X will no
longer be smooth but this only introduces minor technical challanges.

We proceed by induction on the dimension and so we may assume
that Theorem 1.19 holds in dimension ≤ d− 1. Since

h0(OX(mKX)) =
vol(ωX)

d!
md +O(md−1)

and since vanishing to order k at a smooth point x ∈ X imposes at most
kd/d! +O(kd−1) conditions, by an easy computation, it follows that for
any smooth point x ∈ X and m � 0, there exists a Q-divisor Dm

x ∼
mKX such that multx(D

m
x ) > m

2
vol(KX)1//d. (Note that by assuming

that x ∈ X is very general, we may assume that m is independent of
x ∈ X.) Let

τ := sup{t ≥ 0|(X, tDm
x ) is lc at x ∈ X}.

By Remark 2.32, we have τ < 2d
m·vol(KX)1/d

. Let Dx = τDm
x , then

mx ⊂ J (X,Dx) and Dx ∼Q λKX where λ ≤ 2d
·vol(KX)1/d

. Perturbing Dx,

we may assume that on a neighborhood of x ∈ X, we have J (Dx) = IVx
where x ∈ Vx ⊂ X is an irreducible subvariety.

We now plan to follow the ideas in the proof of the Theorem of
Anhern-Siu to cut down the dimension of the non-klt center Vx until
we arrive to the case where dimVx = 0. We will therefore assume that
dimX > dimVx > 0. Following the proof of Theorem 2.56, it suffices
to

(1) produce a divisor Ex′ on Vx such that multx′(Ex′) > dimVx and
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(2) lift Ex to a divisor on X say Fx′ ∼Q λ′KX whose support
does not contain Vx and such that Fx′|Vx ≥ Ex′ where λ′ =
O(vol(KX)−1/n (i.e. λ′ ≤ A′

vol(KX)1/n
+ B′ for appropriate con-

stants A′, B′).

In what follows, we will assume that KX s ample (this can be achieved
by replacing X by its canonical model) and for simplicity that X is
smooth (in practice X has canonical singularities, but this only adds
minor technical difficulties). Notice that by Kawamata subadjunction,
we have

(KX +Dx + εKX)|V ν = KV ν +Bε

where V ν → V is the normalization abd Bε > 0. By Theorem 3.4,
V ν is of general type and so vol(KV ′) > v′n where V ′ → V ν is any
resolution, dimV ′ = n′ < n and vn′ > 0 is a constant. By induction
on the dimension, we may assume that there is an effective Q-divisor
E ′ ∼Q γKV ′ on V ′ with multx′(E

′) > n′ := dimV ′ and 0 < γ < n/vn′
(i.e. γ is bounded above by a constant). Pushing forward to V ν and
adding Bε, we obtain a Q divisor on V ν

Eν +Bε ∼Q (KX +Dx + εKX)|V ν = (1 + λ+ ε)KX |V ν .
Assume for simplicity that Vx is normal (this is true on a neighborhood
of x ∈ X) Since KX is ample, it follows (by Serre vanishing) that

H0(X,OX(mKX))→ H0(X,OV ν (mKX |V ))

is surjective for all m� 0. It then follows that

Eν +Bε ∼Q Fx′|Vx = Fx′|Vx where Fx′ ∼Q (1 + λ+ ε)KX .

Set λ′ = 1 + λ+ ε.
�

4. Varieties of log general type

In this section we will discuss results related to the boundedness of
varieties of log general type. The first question that we encounter is
why should we consider log pairs of general type and what generality
should we consider.

4.1. Automorphisms of varieties of general type. Let X be a
smooth projective variety of general type, then it is known that the
automorphism group of X is finite. It is natural to ask how big can
this automorphism group be. The well known answer in dimension 1
is the following.

Theorem 4.1. Let C be a curve of general type and G its automor-
phism group. Then |G| ≤ 42(2g − 2).
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Proof. Let f : C → B = C/G be the induced morphism, then we

KC ∼Q f
∗(KB +D) where D =

k∑
i=1

(1− 1

ni
)Pi.

here Pi denote the branch points of f and ni the ramification indices of
f over Pi. To prove the above formula, assume that P ∈ B is a point of
ramification index n so that f ∗P = nQ. In local coordinates we have
y = f(x) = xn, then dy = nxn−1dx or equivalently dy/y = ndx/x and
so f ∗(KB + P ) = KC +Q ∼Q KC + f ∗P .

It then follows that

2g − 2 = deg(KC) = |G| · deg(KB +D),

and so it suffices to show that deg(KB +D) ≥ 1
42

. This can be done by

a tedious case by case analisys. Since 1− 1
n
≥ 1/2, we may assume that

there are k ≤ 4 points and that g = −1 so that deg(KB + D) = −2 +∑4
i=1(1− 1

ni
). Assume that n1 ≥ n2 ≥ n3 ≥ n4. Since deg(KB+D) > 0,

n1 ≥ 3 and hence deg(KB + D) ≥ 1
6
. Thus k = 3 (the case k ≤ 2,

g = −1 gives deg(KB + D) < 0). If n3 ≥ 4, then deg(KB + D) ≥ 1
4
.

If n3 = 3, then n1 ≥ 4 and deg(KB + D) ≥ 1
12

. Thus n3 = 2 and

then n2 ≥ 3. If n2 ≥ 5, then deg(KB + D) ≥ 1
10

. If n2 = 4, then

n1 ≥ 5 and so deg(KB + D) ≥ 1
20

. If n2 = 3, then n1 ≥ 7 and so

deg(KB +D) ≥ 1
42

. �

By the same argument, if X is a variety of general type with auto-
morphism group G, f : X → Y = X/G and D is a Q-divisor such that
KX = f ∗(KY +D), then

|G| = vol(KX)

vol(KY +D)
.

Proposition 4.2. (Y,D) is klt and the coefficients of D belong to the
set {1− 1

n
|n ∈ N}.

Proof. We refer the reader to [KM98, Proposition 5.20]. The main
steps of the proof are as follows.

0) It is easy to see that Y is normal (if not, let ν : Y ν → Y be the
normalization, f factors through Y ν ....).

1) It is easy to see that the statement holds for curves and hence it
holds in codimension 1.

2) We must check that KY +D is Q-Cartier. let g = |G| and consider
gKX which is a G invariant Cartier divisor. Locally this is given by G
invariant principal divisors (h) on X.....
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3) Since KY + D is Q-Cartier and f ∗(KY + D) = KX (it suffices to
check this in codimension 1).

4) We check that (Y,D) is klt. Let E be an exceptional divisor for
h : Y ′ → Y and let g : X ′ → X be obtained by fiber product. If E ′

is a divisor mapping to E via h, such that the ramification index of h
along E is r, then near E ′ we have

KX′ = h∗KX + a(E ′, X, 0)E ′ =

h∗f ∗(KY +D) + a(E ′, X, 0)E ′ = f ′
∗
g∗(KY +D) + a(E ′, X, 0)E ′.

KX′ = f ′
∗
KY ′ + (r − 1)E ′ = f ′

∗
(g∗(KY ) + a(E, Y, 0)E) + (r − 1)E ′

= f ′
∗
KY ′ + (r − 1)E ′ = f ′

∗
(g∗(KY +D) + a(E, Y,D)E) + (r − 1)E ′

= f ′
∗
g∗(KY +D) + (ra(E, Y,D) + (r − 1))E ′.

It follows that a(E ′, X, 0)+1 = r(a(E, Y,D)+1) and so if a(E ′, X, 0) >
−1 then a(E, Y,D) > −1. �

To generalize Theorem 4.1, it ”suffices” to show the following.

Conjecture 4.3. Let Pd be the set of klt pairs (Y,D) be a such that
dimY = d and the coefficients of D lie in the set {1 − 1

n
|n ∈ N} (or

more generally in a fixed DCC set C), then the set of volumes

Vd = {vol(KY +D)|(Y,D) ∈ Pd}
has a minimum (or even Vd is a DCC set).

Remark 4.4. Note that if (Y,D) ∈ Pd, then one can consider a log
resolution f : Y ′ → Y and the divisor D′ given by the strict transform
of D plus the exceptional divisors with coefficient 1. Note then that
KY ′ + D′ − f ∗(KY + D) ≥ 0 is exceptional and so vol(KY + D) =
vol(KY ′ + D′) and so in the above conjectures, it suffices to consider
log smooth pairs.

Remark 4.5. It is conjectured that min(V2) = 1
422

.

Proposition 4.6. The set of volumes vol(KX +B) where (X,B) is log
smooth and B = bBc is not discrete.

Proof. For example let X0 = P2 and B0 = L+H1+H2+H3 be the union
of 4 general lines. We define ν1 : X1 → X by blowing up the point
x = L∩H1. Let E1 be the corresponding exceptional divisor and blow
up the intersection point E1 ∩L1 where L1 is the strict transform of L
to obtain X2 → X1 with exeptional divisor E2. Inductively blowing up
the intersection of the strict transform of L with the exceptional divisor
En for Xn → Xn−1, we obtain morphisms νn : Xn → X0. Let Bn =
(ν−1
n )∗B0 + Ex(νn), then KXn +Bn = ν∗n(KX0 +B0). If B′n = Bn−En,

then we claim that vol(KXn + B′n) = 1 − 1
n
. To see this we compute
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the corresponding minimal model. Note that KXn +B′n = f ∗L−En is
not nef. One sees that the minimal model π : Xn → X̄ contracts the
curves E1, . . . , En−1 and the induced morphism η : X̄ → X0 contracts
the curve Ē = π∗En. Since E2

i = −2 for 1 ≤ i ≤ n − 1 and E2
n = −1

and Ei ·Ej = 1 for |i− j| = 1 and Ei ·Ej = 0 for |i− j| > 1, it follows
that

(E1 + 2E2 + . . .+ nEn) · Ei = 0 for 1 ≤ i ≤ n− 1.

But then π∗(nĒ) = E1 + 2E2 + . . .+ nEn and so

Ē2 =
1

n2
(E1 + 2E2 + . . .+ nEn)2 =

1

n2
(E1 + 2E2 + . . .+ nEn)nEn =

n(n− 1)− n2

n2
= − 1

n
.

Finally

vol(KXn+B′n) = (KX̄)2 = (η∗(KX0+B0)−Ē)2 = (KX0+B0)2+Ē2 = 1− 1

n
.

�

Remark 4.7. Many interesting examples (with empty boundary) can
be constructed by taking hypersurfaces of the form xa11 x2 + xa22 x3 +
xa33 x4 +xa44 x1 = 0 in weighted projective space P(w1, w2, w3, w4) (known
as Kollár surfaces).

Exercise 4.8. Let (X,B) be a log canonical surface, then vol(KX +
B) ≥ (KX +B)2 and equality holds iff KX +B is nef. (Hint: consider
ν : X → X ′ the canonical model, then KX + B = ν∗(KX′ + B′) + E
where E ≥ 0 (E = 0 iff KX + B is nef. But then (KX + B)2 =
(KX′ +B′)2 +E2 = (KX′ +B′)2− e where e ≥ 0 (and e = 0 iff KX +B
is nef).

4.2. Open varieties. Let U be a smooth quasi-projective variety and
X its closure (in the corresponding projective space). By Hironaka’s
Theorem, we may assume that X is also smooth and D := X \ U is a
simple normal crossings divisor.

Lemma 4.9. The vector spaces H0(m(KX + D)) depend only on U
(and not the choice of X and D).

Proof. Suppose that ν : X ′ → X is a morphism of smooth projective
varieties which is an isomorphism over U such that D′ = ν−1(D) also
has has simple normal crossings. Since (X,D) is log canonical and
D′ ≥ Ex(ν) it follows thaty KX′ +D′ = ν∗(KX +D) +E where E ≥ 0
is ν-exceptional. But then

H0(m(KX′ +D′)) = H0(mν∗(KX +D) +mE) = H0(m(KX +D)).
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The proof now follows easily. �

Note that the vector spaces H0(Ωi
X(logD)) are also uniquely deter-

mined by U .

4.3. Iitaka fibration. Let (X,B) be a proper klt pair and R(KX +
B) = ⊕m≥0H

0(m(KX + B)), then R(KX + B) is finitely generated
and so we may consider the corresponding projective variety Z :=
ProjR(KX + B). By a Theorem of Mori and Fujino there exists a klt
pair (Z,BZ) and integers l,m such that R(KX+B)(l) = R(KZ+BZ)(m).

The construction is somewhat involved. Replacing X by a higher
model, we may assume that f : X → Z is a morphism. Replac-
ing X,Z by appropriate birational models, we may assume that f is
smooth other the complement of snc divisor. Assume for simplicity
that KX ∼Q,Z= 0 so that KX ∼Q f ∗L where L is a Q-Cartier divisor
on Z. (conjecturally this can be accomplished by running a relative
minimal model so that KX is semiample over Z and replacing Z by
ProjR(KX +B/Z)). We define BZ =

∑
(1− tP )P where for any prime

divisor P ⊂ Z, tP = sup{t ≥ 0|(X,B + tf ∗P ) is lc over ηP}. We let
MZ = L− (KZ + BZ). The divisor BZ is known as the boundary part
and the divisor MZ is the moduli part. It is known that MZ is a nef
Q-divisor and conjectured that it is semiample. If f is an elliptic fibra-
tion, then MZ = j∗OP1(1/12). It is easy to see that the coefficients of
BZ are < 1 and hence (Z,BZ) is klt

Since KZ+BZ+MZ is big, it is Q-linearly equivalent to A+E where
A is ample and E ≥ 0. But then

4.4. Proper moduli spaces. Another reason to consider log pairs
is to be able to construct proper moduli spaces. In order to obtain
a proper moduli space (functor), we must consider semilog canonical
pairs (X,B).

Definition 4.10. A SLC (semi-log-canonical) pair (X,B) is given by
an S2 quasiprojective variety X with SNC singularities in codimension
1 and a R-divisor B whose support has no component contained in
Sing(X), such that KX + B is R-Cartier and if ν : Xν → X is the
normalization and KXν +Bν = ν∗(KX+B), then (Xν , Bν) is a disjoint
union of lc pairs.

For example if X is a smooth variety and S is a simple normal
crossings divisor and (X,S + B) is a lc pair, then (S,BS) is a slc pair
where (KX + S +B)|S = KS +BS. More generally we have:
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Lemma 4.11. Let (X,S + B) be a dlt pair, where S = bS + Bc and
write KS + BS = (KX + S + B)|S, then (S,BS) is slc. Note that if
D ⊂ Sν is the double locus, then BS ≥ D.

Proof. See [???]. �

Suppose now that (X 0,B0) is a lc pair and f : X 0 → T 0 = T \ O
is a projective morphism to a smooth curve (or to the generic point
of a DVR). In what follows we will often replace T by an appropriate
neighborhood of O ∈ T . Assume that for exery t ∈ T 0 the pairs
(X 0

t ,B0
t ) are log canonical models i.e. pairs with lc singularities such

that KX 0
t

+ B0
t is ample. We let X → T be a compactification and

X ′ → X be a log resolution of (X ,B + X0). Replacing T by a cover
ramified only over O, we may assume that X ′ → T is semistable so
that X ′t is smooth for t ∈ T \ O and X ′O is a snc divisor. Let B′
be the divisor given by the strict transform of B plus all exceptional
divisors dominating T plus X0. By [HX13], the relative canonical ring
R(KX ′ + B′) is finitely generated over T and so we may consider

X̄ := ProjTR(KX ′ + B′).
Let B̄ be the strict transform of B′, then (X̄ , B̄)×T (T \O) is isomorphic
to (X 0,B0). Moreover, since B̄ ≥ X̄O, the pair (X̄O, B̄O) is a slc model
where KX̄O + B̄O = (KX̄ + B̄)|X̄O . We also have the following.

Lemma 4.12. Suppose that (X̄ ′, B̄′) is another lc model over T iso-
morphic to (X̄ , B̄) over T \ O and such that B̄′ ≥ X̄ ′O, then (X̄ ′, B̄′) is
isomorphic to (X̄ , B̄) over T .

Proof. Let p : W → X̄ and q : W → X̄ ′ be a common resolution and
write p∗(KX̄ + B̄) = q∗(KX̄ ′ + B̄′) +E. Since B̄ ≥ X̄ ′O, it is easy to see
that p∗E ≥ 0 and since q∗(KX̄ ′ + B̄′) is p-nef, then by the Negativity
Lemma, E ≥ 0. Similarly q∗E ≤ 0 and p∗(KX̄ + B̄) is q-nef so that
E ≤ 0. Thus E = 0 and

X̄ = ProjR(KX̄ + B̄/T ) = ProjR(KX̄ ′ + B̄′/T ) = X̄ ′.
�

5. The MMP

5.1. Non-vanishing, base point free and cone theorems. Recall
that for a normal projective variety X, the set of R-Cartier divisors
modulo numerical equivalence is denoted by N1(X) and N1(X) denotes
the dual space of R linear combinations of curves up to numerical
equivalence. We let the effective cone NE(X) ⊂ N1(X) be the cone
generated by effective curves. For any cone C ⊂ N1(X), and any
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L ∈ N1(X), CL≥0 ⊂ N1(X) denotes the set of curves Σ ∈ C such that
C · L ≥ 0 (and similarly for CL<0, CL=0 etc.). If CL≥0 = R≥0[Σ] for
some curve class 0 6= [Σ] ∈ N1(X), then we say that R≥0[Σ] (or simply
[Σ]) is an extremal ray of C. Similarly if CL≥0 = CL=0, then F = CL=0

is an extremal face. Next we recall the following fundamental results.

Theorem 5.1 (Non-vanishing theorem). Let (X,B) be a projective
sub-klt pair and D a nef Cartier divisor such that aD − (KX + B) is
nef and big for some a > 0, then H0(OX(mD − bBc)) 6= 0 for all
m� 0.

Proof. Step 0. We may assume that X is smooth and aD− (KX +B)
is ample.

Let f : X ′ → X be a resolution D′ = f ∗D and KX′ +B′ = f ∗(KX +
B). Then aD′ − (KX′ + B′) = f ∗(aD − (KX + B)) is nef and big and
so aD′ − (KX′ + B′) ∼Q A + F where A is ample and F ≥ 0. For
0 < ε� 1, (X ′, B′ + εF ) is sub-klt and

aD′ − (KX′ +B′ + εF ) ∼Q (1− ε)(aD′ − (KX′ +B′)) + εA

is ample. Since f∗(B
′ + εF ) ≥ B, we have

h0(OX′(mD′ − bB′ + εF c)) ≤ H0(OX(mD − bBc))

and so we may replace D and (X,B) by D′ and (X ′, B′ + εF ′).
Step 1. We may assume that D is not numerically equivalent to 0.
Suppose that in fact D ≡ 0, then for any k, t ∈ Z, we write

kD − bBc ≡ KX + {B}+ tD − (KX +B).

Note that tD − (KX + B) is ample for all t ∈ Z and so by Kawamata
Viehweg vanishing we have

h0(OX(mD − bBc)) = χ(OX(mD − bBc)) =

χ(OX(−bBc)) = h0(OX(−bBc)) 6= 0.

Step 2. For any x ∈ (X \ Supp(B)) there is an integer q0 such that
for any integer q ≥ q0 there is a Q-divisor

M(q) ≡ qD − (KX +B)

with multxM(q) > 2 dimX.
Let d = dimX and A be an ample divisor. Since D is nef, De ·Ad−e ≥

0 for 1 ≤ e ≤ d and since D is not numerically trivial, D · Ad−1 > 0.
But then

(qD−KX−B)d = ((q−a)D+aD−KX−B)d ≥ d(q−a)D·(aD−KX−B) > 0.
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Since the RHS goes to infinity as q goes to infinity, by Serre vanishing
and Riemann Roch, we have

h0(OX(e(qD −KX −B))) ≥ ed

d!
(2d)d +O(ed−1).

Vanishing at x with multiplicity > 2de imposes at most

(2de)d

d!
+O(ed−1)

conditions and so there is a divisor

M(q, e) ∈ |e(qD −KX −B)| with multxM(q, e) > 2de.

let M(q) = M(q, e)/e.
Step 3. Let t be the log canonical threshold of (X,B) with respect

to M = M(q), then t < 1/2. Since A := qD − KX − B is ample,
perturbing, we may assume that (X,B + tM) has a unique non-klt
center V . By Theorem 2.29, V is normal and by Theorem 3.2, (KX +
B+ tM + εA)|V ∼Q KV +BV,ε where (V,BV,ε) is sub-klt. Consider the
short exact sequences

0→ OX(mD)⊗ J (X,B + tM)→ OX(mD)→ OV (mD|V )→ 0.

Since

mD − (KX +B + tM) ∼R (m− tq)D − (1 + t)(KX +B)

is ample for all m� 0, by Nadel vanishing H1(OX(mD)⊗ J (X,B +
tM)) = 0 and so it suffices to show that H0(OV (mD)) 6= 0. Since
mD|V is nef and

mD|V − (KV +BV,ε) ∼R (mD −KX −B − tM − εA)|V ∼R

(m− (t+ ε)q)D − (1 + t+ ε)(KX +B)

is ample, by induction on the dimension H0(OV (mD)) 6= 0.
�

Exercise 5.2. Show that if D is nef and not numerically equivalent to
0, then D · Ad−1 > 0 for any ample divisor A.

Theorem 5.3. [Base point free theorem] Let (X,B) be a projective klt
pair and D be a nef Cartier divisor such that aD−KX −B is nef and
big for some a > 0, then |bD| is base point free for all b� 0.

Proof. As in the proof of the non-vanishing theorem, we may assume
that aD−KX−B is ample. Pick m > 0 such that Bs(mD) = B(mD).
(Recall that the stable base locus is defined as B(D) = ∩m>0Bs(mD).
It is easy to see that Bs(mD) = B(mD) for any m > 0 sufficiently
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divisible.) If D ≡ 0, then h0(mD) 6= 0 implies that mD ∼ 0 and so
Bs(mD) = ∅ as required.

Otherwise, assume for simplicity that X is smooth. Pick general
sections D1, D2, . . . , Dd+1 ∈ |mD|. Then c := lct(X,B;

∑
Di) < 1 and

the non-klt locus of (X,B + c
∑
Bi) is contained in Bs(mD). Per-

turbing, we may assume that there is a unique such non-klt center
say V . Arguing as in the proof of the non-vanishing theorem, we
may assume that H0(OX(mD)) → H0(OV (mD)) is surjective and
H0(OV (mD)) 6= 0. But then V 6⊂ Bs(mD) contradicting the assump-
tion that V ⊂ B(D). �

Exercise 5.4. Show that Bs(mD) ⊂ Bs(mpD) for any m, p ∈ N, but
it can happen that Bs(mD) 6⊂ Bs((m + 1)D). Deduce that B(D) =
Bs(mD) for all m > 0 sufficiently big and divisible.

Theorem 5.5 (Cone Theorem). Let (X,B) be a projective klt pair.
Then

(1) There are countably many rational curves Cj ⊂ X such that
0 < −(KX +B) · Cj ≤ 2 dimX, and

NE = NE(KX+B)≥0 +
∑

R≥0[Cj].

(2) For any ε > 0, there are only finitely many rays

[Cj] ∈ NE(X)(KX+B+εH)<0.

(3) If F ⊂ NE(X) is a KX+B negative extremal face, then there is
a unique morphism contF : X → Z such that (contF )∗OX = OZ
and an irreducible curve C ⊂ X is contracted to a point if and
only if [C] ∈ F .

(4) Let L be a line bundle on X such that L · C = 0 for all curves
[C] ∈ F , then there is a line bundle LZ on Z such that (contF )∗LZ =
L.

Proof. For (1) and (2) please see [KM98, §3.3]. Next we sketch the proof
of (3) and (4). Let F ⊂ NE(X) be a KX + B negative extremal face
F = FD for some Q-Cartier divisor D. For any m� 0, the Q-Cartier
divisor mD− (KX +B) is strictly positive on NE(X) \ {0}. Therefore
mD − (KX + B) is ample and mD is nef and by Theorem 5.3, mD is
base point free for all m � 0. Let gm : X → Z = Zm be the Stein
factorization of X → |mD| so that Zm is normal and gm,∗OX = OZ .
Let MZm be the pull-back of the hyperplane line bundle on |mD| to
Zm so that g∗mMZm = mD. This proves (3).

A curve C ⊂ X is contracted by gm iff C · D = 0 and so g = gm :
X → Z is independent of m � 0. But then D = (m + 1)D −mD =
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g∗Mm+1−g∗Mm is Cartier. Suppose now that L ·C = 0 for all [C] ∈ F ,
then L + mD also supports F for m � 0 and so it defines g. By the
arguments above L+mD = g∗NZ for some Cartier divisor NZ on Z so
that L = g∗(NZ −MZ,m). �

5.2. Minimal model preliminaries. In this section we recall some
of the results from the minimal model program.

Let (X,B) and (X ′, B′) be lc pairs and f : X → T , f ′ : X ′ → T ′

be projective morphisms, then a birational map φ : X 99K X ′ is a
birational contraction if X ′ contains no divisors exceptional over X.
Given a birational contraction φ : X 99K X ′ such that B′ = φ∗B, then
φ is KX + B non-positive (resp. KX + B negative) if for any common
resolution p : W → X and q : W → Y we have p∗(KX +B)− q∗(KX′ +
B′) is effective (resp. effective and its support contains all φ exceptional
divisors.

Exercise 5.6. Show that if φ : X 99K X ′ is KX +B non-positive, then
R(KX +B/T ) ∼= R(KX′ +B′/T ).

Exercise 5.7. That a composition of two KX + B non-positive bira-
tional contraction is again a KX+B non-positive birational contraction.

Exercise 5.8. Show that a contraction of a −1curve on a smooth sur-
face X (resp. a −2 curve on a surface with canonical singularities) is
KX negative (resp. KX non positive). Conclude that the map to the
minimal model X → Xmin (resp. to the canonical model X → Xcan )
is KX negative (resp. KX non-positive).

Exercise 5.9. Let φ : X → X ′ be a KX + B non positive birational
contraction. Show that for any divisor E over X we have aE(X,B) ≤
aE(X ′, B′).

Exercise 5.10. Let φ : X → X ′ be a KX + B negative birational
contraction. Show that for any divisor E over X we have aE(X,B) ≤
aE(X ′, B′) and strict inequality holds if the center of E is contained in
the exceptional set of φ.

Definition 5.11. If (X,B) is klt and φ is a KX+B negative birational
contraction such that X ′ is Q-factorial and KX′+B

′ is nef over T , then
we say that X ′ is a log terminal model of (X,B) over T .

Definition 5.12. If (X,B) is lc and φ is a KX + B non-positive bi-
rational contraction such that KX′ + B′ is ample, then we say that
(X ′, B′) is a log canonical model of (X,B).

Exercise 5.13. Show that log canonical models are unique and given
by X 99K ProjR(KX +B).
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Exercise 5.14. Show that minimal models are not smooth in dimen-
sion d ≥ 3. (Hint consider the quotient of an abelian threefold via an
involution.)

Exercise 5.15. Show that minimal models are not unique in dimension
d ≥ 3.

Definition 5.16. Let (X,B) be a Q-factorial klt pair and f : X →
Z be a small (so that dim(Ex(f)) = dimX − 1) projective birational
morphism of normal varieties with f∗OX = OZ and relative picard
number ρ(X/Z) = 1 such that −(KX +B) is ample over Z, then f is a
KX +B flipping contraction. We say that Ex(f) is the flipping locus.

Definition 5.17. If f : X → Z is a flipping contraction, then the flip
f+ : X+ → Z (if it exists) is given by X+ = ProjZ(R(KX + B)). We
say that Ex(f+) is the flipped locus.

Remark 5.18. The existence of flips in the klt case follows from [BCHM10],
and in the log canonical case from results of Birkar and of Hacon-Xu.

Lemma 5.19. Let f : X → Z be a KX + B flipping contraction and
f+ : X+ → Z be the corresponding flip, then

(1) φ : X 99K X+ is small,
(2) X+ is Q-factorial,
(3) KX+ +B+ is f+-ample,
(4) φ : X 99K X+ is KX + B non-positive (in particular if (X,B)

is klt/lc, then so is (X+, B+)).
(5) If E is a divisor with center contained in the flipping or flipped

locus, then aE(X,B) < aE(X+, B+).

Proof. (4) and (5) are an easy consequence of the negativity lemma.
Let p : W → X and q : W → Y be a common resolution, then
p∗(KX + B) − q∗(KX+ + B+) = E where −E is exceptional and nef
over X and so E ≥ 0 which proves (4). Moreover, the support of E
dominates both the flipping and flipped locus (by the ampleness over
Z condition on KX+ + B+ and −(KX + B)). But then the fibers of
W → Z are contained in E and (5) follows.

By assumption KX+ +B+ is Q-Cartier and f+ ample and (3) holds.
Suppose that f+ is not small and let E be an f+-exceptional divisor.

Since KX+ +B+ is ample over Z, we may assume that Z is affine and
OX+(m(KX+ +B+)) = OX+(1) is very ample. For any integer t� 0

OZ(tm(KZ + f∗B)) = f+
∗ OX+(t) ( f+

∗ OX+(t)(E),

where the last inclusion is strict for t � 0 as OX+(1) is ample. Since
OZ(tm(KZ+f∗B)) is reflexive, there is a natural inclusion f+

∗ OX+(t)(E) ⊂
OZ(tm(KZ+f∗B)) which is impossible. Thus f+ is small and (1) holds.
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Let G+ be a Q divisor on X+ and set G = φ−1
∗ G

+. Since X is Q-
factorial, G is Q-Cartier. Since ρ(X/Z) = 1, any Q-Cartier divisor G
on X is of the form G ∼Q aD + b(KX +B) where D = f ∗DZ for a Q-
Cartier divisorDZ on Z. But thenG+ = φ∗G = af+∗DZ+b(KX++B+)
is Q-Cartier, and hence (2) follows.

�

Exercise 5.20. Let X 99K X+ be a KX +B flip. If (X,B) is dlt (resp.
plt), show that (X+, B+) is dlt (resp. plt).

Exercise 5.21. Let f : X → Z be a flipping contraction, show that
KZ + f∗B is not Q-Cartier and hence (Z, f∗B) is not lc.

Exercise 5.22. Show that the properties of Lemma 5.19 determine the
flip uniquely.

Definition 5.23. Let (X,B) be a Q-factorial klt pair and f : X → Z
be a projective morphism of normal varieties such that dim Ex(f) =
dimX− 1, f∗OX = OZ, −(KX +B) is ample over Z and ρ(X/Z) = 1,
then f is a divisorial contraction.

Lemma 5.24. Let f : X → Z be a divisorial contraction, then

(1) E = Ex(f) is a prime divisor,
(2) −E is ample over Z,
(3) f is KX +B negative and hence (Z, f∗B) is klt, and
(4) X is Q-factorial.

Proof. Let E be an exceptional prime divisor. Since the fibers of f are
connected, if E 6= Ex(f), then there is a curve C intersecting E but not
contained in E. It follows that C · E > 0 and so E is relatively ample
(as ρ(X/Z) = 1). By the negativity lemma we obtain an immediate
contradiction and so E = Ex(f) and (1) follows.

It also follows from the negativity lemma that −E is not relatively
trivial and hence either ample or anti-ample (as ρ(X/Z) = 1, but then
−E is ample over Z and (2) follows.

We may write KX +B−aE ∼Q,Z 0 for some a > 0 and so KX +B =
f ∗(KZ + f∗B) + aE and hence (3) holds.

Let G be a divisor on Z. Pick e so that f−1
∗ G + eE ∼Q,Z 0, then

G+ eE ∼Q f
∗G and so G is Q-Cartier.

�

Exercise 5.25. Let φ be a birational contraction. Show that if D ∼Q E
on X, then φ∗D ∼Q φ∗G. In particular, if D is big or pseudo-effective,
then so is φ∗D.

Exercise 5.26. Let f : X → Z be a birational morphism and G a
Q-Cartier divisor on Z, then f ∗G is Q-Cartier on X.
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Exercise 5.27. Let f : X 99K Y be a small birational morphism, then
|G|Q ∼= |f∗G|Q for any Q-divisor on X.

Definition 5.28. Let (X,B) be a Q-factorial klt pair and f : X → Z
be a morphism of normal varieties such that f∗OX = OZ, ρ(X/Z) = 1,
−(KX + B) is ample over Z and dimX > dimZ, then f is a Mori
fiber space.

Exercise 5.29. Show by example that there exist Mori fiber spaces such
that the general fiber Xz has Picard number ρ(Xz) > 1.

5.3. Running the minimal model program.

Theorem 5.30. Let (X,B) be a klt pair and f : X → T be a projective
morphism such that KX +B is big over T (resp. KX +B is not pseudo-
effective over T ), then (X,B) has a minimal model over T (resp. a
Mori fiber space) which can be obtained by a finite sequence of flips and
divisorial contractions over T .

In order to construct the minimal model (when KX + B is pseudo-
effective) or a Mori fiber space (when KX +B is not pseudo-effective),
we run a minimal model program. The traditional strategy is as follows:

(1) Start with a projective Q-factorial klt pair (X,B).
(2) If KX +B is nef, stop: this is a minimal model.
(3) If KX + B is not nef, pick a KX + B negative extremal ray

Σ ⊂ NE(X).
(4) If Σ defines a Mori fiber space, stop.
(5) If Σ defines a divisorial contraction (resp. a flipping contrac-

tion) f : X → Z, then replace (X,B) by (Z, f∗B) (resp. by the
flip (X+, B+)) and return to (2).

Note that if if we have a flip X+ 99K X+, then ρ(X+) = ρ(X) but if we
have a divisorial contraction, then ρ(Z) = ρ(X)−1. Since ρ(X) ∈ N, it
follows easily that any sequence of steps of the minimal model program
has at most ρ(X) divisorial contractions and hence to show that the
above strategy ends after finitely many steps, we must show that any
sequence of flips is finite.

Conjecture 5.31 (Termination of flips). Let (X,B) be a Q-factorial
projective klt pair. There is no infinite sequence of KX + B flips X =
X0 99K X1 99K X2 99K . . ..

Remark 5.32. To be more precise X = X0 99K X1 99K X2 99K . . . is
a sequence of KX +B flips if there are KXi +Bi flipping contractions
Xi → Zi such that Xi+1 → Zi is the corresponding KXi +Bi flip where
Bi is the strict transform of B on Xi.
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Remark 5.33. The termination of flips conjecture is known in dimen-
sion 3 and many cases of dimension 4. In higher dimension it appears
to be a very difficult conjecture. For this reason an alternative ap-
proach is used in [BCHM10] that reduces the question of termination
of flips to a question of termination of special sequences of flips with
nice properties.

Definition 5.34 (Minimal model program with scaling). In this ver-
sion of the MMP we start with a projective Q-factorial pair (X,B+H)
such that KX + B + H is nef and B is big. (Given (X,B) one may
for example pick H a general Q divisor Q-linearly equivalent to a suf-
ficiently ample divisor.) Consider now the nef threshold

λ = inf{t ≥ 0|KX +B + tH is nef}.
(1) If λ = 0, then KX +B is nef and (X,B) is a minimal model.
(2) If λ > 0, pick a (KX + B)-negative extremal ray R such that

(KX + B + λH) · R = 0. Let f : X → Z be the corresponding
contraction.

(3) If dimZ < dimX, then we have a KX +B Mori fiber space.
(4) If dimZ = dimX, then f is either a KX + B flipping or di-

visorial contraction and we replace (X,B + λH) by the corre-
sponding KX +B flip (X+, B+ +λH+) or divisorial contraction
(Z, f∗B+λf∗H). Note that by the Base Point Free Theorem 5.3,
KX+ +B+ +λH+ or KZ+f∗B+λf∗H is also nef and klt and so
we may replace (X,B,H) by (X,B, λH) or (Z, f∗, λf∗H) and
repeat the process.

Remark 5.35. Therefore, running the MMP with scaling we produce
a sequence of rational numbers 1 ≥ . . . ti ≥ ti+1 . . . ≥ 0 and flips or
divisorial contractions Xi 99K Xi+1 such that

(1) KXi +Bi + tHi is nef for ti ≥ t ≥ ti+1,
(2) X 99K Xi is a sequence of steps of the KX + B + tH mmp for

any 0 ≤ t ≤ ti,
(3) (Xi, Bi + tHi) is klt for 0 ≤ t ≤ ti,
(4) KX +B + tH is pseudo-effective for any t ≥ ti.

We then have the following.

Theorem 5.36. [Termination of the minimal model program with scal-
ing] Let (X,B+H) be a projective Q-factorial klt pair such that KX +
B+H is nef and B is big (or KX +B is big or KX +B is not pseudo-
effective), then the KX + B mmp with scaling of H terminates after
finitely many steps.

Proof. For a detailed proof we refer the reader to [BCHM10]. �
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Remark 5.37. The case when KX + B is big is easily reduced to the
case when B is big. Consider in fact a rational number 0 < e � 1
and write KX + B ∼Q A + E where A is ample and E ≥ 0 (which is
possible if KX +B is big). We then have that (X,B′ := B+ e(A+E))
is klt, B′ is big, and KX + B′ ∼Q (1 + e)(KX + B). It follows easily
that every step of the KX +B′ mmp is a step of the KX +B mmp and
so the termination of the KX + B′ mmp gives the termination of the
KX +B mmp.

Remark 5.38. The case when KX +B is not pseudo-effective is easily
reduced to the case when B is big. Consider in fact a rational number
0 < e� 1, then KX +B+ eH is not pseudo-effective and in particular
ti > e for any i ≥ 0. Let B′ = B + eH, then every step of the KX +B
mmp with scaling of H is a step of the KX + B′ mmp with scaling of
H (or more precisely of (1− e)H). Termination of the KX +B′ mmp
gives the termination of the KX +B mmp.

As a consequence of Theorem 5.36, we obtain the following.

Theorem 5.39 (Existence of minimal models). Let (X,B) be a Q-
factorial projective klt pair such that B (or KX +B) is big. If KX +B
is pseudo-effective, then (X,B) has a good minimal model. If KX +B
is not pseudo-effective, then (X,B) has a Mori fiber space.

Proof. Let H be a general sufficiently ample divisor, then (X,B + H)
is klt and KX + B + H is ample and in particular nef. By Theorem
5.36, the KX + B mmp with scaling of H terminates φ : X 99K X ′.
It is easy to see that φ is KX + B negative birational contraction. If
KX′ + B′ is nef, then this is a minimal model for KX + B. Note that
by Theorem 5.3, KX′ + B′ is semiample (assume for simplicity that
B is a Q-divisor) and so this is a good minimal model. In particular
κ(KX + B) = κ(KX′ + B′) ≥ 0 and so KX + B is pseudo-effective.
If KX′ + B′ is not nef, then there is a Mori fiber space g : X ′ → Z
such that −(KX′ +B′) is g ample. It follows easily that KX +B is not
pseudo-effective. �

Theorem 5.40. [Finite generation] Let (X,B) be a projective klt pair
such that B ≥ 0 has rational coefficients, then R(KX + B) is finitely
generated.

Proof. If B is big, then by Theorem 5.39, consider the minimal model
f : X 99K X ′. Then R(KX + B) ∼= R(KX′ + B′). Note that B′ is
big, and by Theorem 5.3, KX′ +B′ is semiample so that there exists a
morphism g : X ′ → Z such that KX′+B′ ∼Q g

∗A where A is an ample
Q-divisor on Z and f∗OX = OZ . It is well known that R(KX′ +B′) is
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finitely generated if and only if so is the truncation

R(KX′ +B′)(m) = ⊕k∈NH0(OX′(km(KX′ +B′)))

for any m > 0. Suppose that m(KX′ + B′) ∼ g∗mA where mA is
Cartier, then by the projection formula

⊕k∈NH0(OX′(km(KX′ +B′))) = ⊕k∈NH0(OZ(kmA))

which is easily seen to be finitely generated.
We now prove the general case. If |m(KX + B)| = ∅ for all m > 0,

then the claim is obvious. If this is not the case, then consider the
rational map X → Z defined by |m(KX + B)| for m � 0 sufficiently
divisible. After replacing X and Y by appropriate birational models,
we may assume that Y is smooth and f : X → Y is a morphism. By a
result of Mori and Fujino, we have that R(KX+B) ∼= R(KZ+BZ+MZ)
where (Z,BZ) is a klt log smooth pair and MZ is a nef divisor. By
construction KZ + BZ + MZ is big and hence Q linearly equivalent
to AZ + EZ where AZ is ample and EZ ≥ 0. Fix 0 < e � 1, then
MZ + eAZ is ample. Pick a general element GZ ∈ |MZ + eAZ |, then
(Z,B′Z := BZ + eEZ +GZ) is klt and B′Z is big. Fix m > 0 sufficiently
divisible, then R(KZ + BZ + MZ)(m′) ∼= R(KZ + B′Z)(m) where m′ =
m(1 + e). It follows that R(KZ + BZ + MZ) is finitely generated if
and only if so is R(KZ + B′Z). The claim follows by what we proved
above. �

Exercise 5.41. Let Z be a normal variety and A an ample divisor.
Show that R(A) = ⊕k∈NH0(OZ(kA)) is finitely generated.

To gain some intuition on why Theorem 5.36 holds, we show the
following.

Proposition 5.42. Assume that Theorem 5.39 holds, then Theorem
5.36 also holds.

Proof. The idea of the proof is quite simple (if we assume Theorem
5.39). Since each step of the MMP with scaling of H produces a
minimal model for KX + B + tH for some 0 ≤ t ≤ 1, it suffices
to show that there are only finitely many such minimal models. As-
sume by way of contradiction that there is an infinite sequence of flips
Xi 99K Xi+1 such that KXi + Bi + tHi is nef and klt for t ∈ [si+1, si]
where 1 ≥ s1 ≥ . . . ≥ si ≥ si+1 ≥ . . . > 0. Let σ = lim si.
By Theorem 5.39, there exists a minimal model f : X 99K X ′ for
KX + B + σH. Note that we may that f is KX + B + σH neg-
ative and KX′ + B′ + σH ′ is semiample (by Theorem 5.3) so that
there is a morphism g : X ′ → Y and an ample R-divisor A on Y
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such that g∗A ∼R KX′ + B′ + σH ′. It is easy to see that the map
f is KX + B + sH negative for s ∈ [σ, σ + ε] and 0 < ε � 1 (in
the sense that if E is a divisor on X which is f -exceptional, then
aE(X,B + sH) < aE(X ′, B′ + sH ′)). Let h : X ′ 99K X ′′ be a minimal
model for KX′ + B′ + (σ + ε)H ′ over Y , then in fact h is a minimal
model over Y for KX′ + B′ + sH ′ for any s ∈ (σ, σ +−ε]. The reason
being that in this case s = t(σ + ε) + (1− t)σ for some 1 ≥ t > 0 and
so

KX′+B
′+sH ′ = t(KX′+B

′+(σ+ε)H ′)+(1−t)(KX′+B
′+σH ′) ∼R,Y

t(KX′ +B′ + (σ + ε)H ′).

But then it is clear that the KX′ + B′ + (σ + ε)H ′ mmp over Y is
automatically a KX′ + B′ + sH ′ mmp over Y . It is easy to see that
if 0 < t � 1, then X ′′ is in fact a minimal model for KX′ + B′ + sH ′

(not just over Y ). Otherwise, let Σ be a curve with (KX′ + B′ +
sH ′) · Σ < 0, then g∗Σ 6= 0 and so Σ · (KX′ + B′ + σH ′) ≥ δ > 0
(eg. if r(KX′ + B′ + σH ′) is Cartier, then let δ = 1/r). We may
assume that Σ is a KX′ +B′ + (σ + ε)H ′ negative extremal ray and so
(KX′ +B′ + (σ + ε)H ′) · Σ ≥ −2 dimX. But then

0 > (KX′ +B′ + sH ′) · Σ =

t(KX′ +B′ + (σ + ε)H ′) · Σ + (1− t)(KX′ +B′ + σH ′) · Σ ≥
2t dimX − (1− t)δ > 0 for 0 < t� 1.

This is a contradiction and so (replacing ε by a smaller number) we may
assume that X ′′ is a KX′+B

′+(σ+ε)H ′ minimal model. Let X ′′ → W
be the corresponding log canonical model, then for any si ∈ (σ, σ + ε],
Xi → W is the log canonical model for KXi +Bi + siHi. Let ηi be the
corresponding morphism so that KXi + Bi + siHi = η∗i (KXW + BW +
siHW ). Let Xi → Zi be the flipping contraction with flip Xi+1 → Zi,
then KXi +Bi+si+1Hi is trivial over Zi and hence there is a morphism
Zi → W . let Ci be a flipping curve, then (KXi + Bi + siHi) · Ci < 0,
but this is impossible as KXi + Bi + siHi is pulled back from W and
ηi,∗Ci = 0. �

5.4. Useful consequences.

Theorem 5.43. Let (X,B) be a projective klt pair and E1, . . . , En a
finite collection of divisors over X such that aEi(X,B) ≤ 0, then there
exists a proper birational morphism f : X ′ → X such that the set of
f -exceptional divisors is in bijection with E1, . . . , En. In particular:

(1) If we pick n = 0, then X ′ → X is a small birational morphism
such that X ′ is Q-factorial and KX′ +B′ = f ∗(KX +B) where
B′ = f−1

∗ B and (X ′, B′) is klt.
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(2) If we pick E1, . . . , En to be the set of all divisors exceptional
over X such that aE(X,B) ≤ 0, then (X ′, B′) is terminal where
KX′ +B′ = f ∗(KX +B).

Proof. Let g : X ′′ → X be a log resolution such that E1, . . . , En are
divisors on X ′′. Write KX′′ +B′′ = g∗(KX +B) +E ′′ where B′′ and E ′′

are effective Q-divisors with no common components. Let F be the sum
of all exceptional divisors distinct from E1, . . . , En, then (X ′′, B′′+ εF )
is klt for any 0 < ε � 1 and KX′′ + B′′ + εF is clearly big over X
and so there exists a minimal model X ′′ 99K X ′ for KX′′ + B′′ + εF
over X. But then E ′′ + εF is nef over X and exceptional over X. By
the negativity lemma E ′′ + εF ≤ 0 by the negativity lemma and so
E ′′ + εF = 0. But then the set of X ′ → X exceptional divisors is in
bijection with E1, . . . , En.

(1) is immediate, but (2) is more subtle. First of all, one must show
that the set of divisors exceptional over X such that aE(X,B) < 0
is finite. This can be done by (an easy but tedious argument) first
replacing X by a log resolution and then blowing up along strata of
the support of B. Since KX′ + B′ = f ∗(KX + B), for any divisor
E exceptional over X ′, we have aE(X ′, B′) = aE(X,B) > 0 (since
otherwise E is a divisor on X ′). �

We will also need the following stronger result which is proven by a
similar method.

Theorem 5.44. Let (X,B) be a log pair where B ∈ [0, 1]. Then there
exists a projective birational morphism f : Y → X such that

(1) Y is Q-factorial,
(2) f only extracts divisors of discrepancy aE(X,B) ≤ −1,
(3) If E =

∑
Ei is the sum of the f -exceptional divisors and BY =

f−1
∗ B, then

KY +BY + E = f ∗(KX +B) +
∑

aE(X,B)<−1

(aE(X,B) + 1)E.

(4) If in addition (X,B) is log canonical and B ∈ [0, 1), then we
may chose f so that there is a divisor with support equal to
E which is nef over X. In particular the inverse image of the
non-klt locus of (X,B) is equal to the support of E.

Proof. See [HMX14a, Proposition 3.3.1]. �

Lemma 5.45. Let f : X → X ′ be a birational morphism between
log canonical pairs (X,B) and (X ′, B′) (where B,B′ are effective R-
divisors). Suppose that KX + B is big and (X,B) has a log canonical
model g : X 99K Xc.
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If f∗B ≤ B′ and vol(KX + B) = vol(KX′ + B′) then the induced
birational map X ′ 99K Xc is also the log canonical model of (X ′, B′).

Proof. Let π : W → X be a log resolution of (X, f−1
∗ B′ + Ex(f)) and

of g. We write
KW + Θ = π∗(KX +B) + E

where Θ and E are effective R-divisors with no common components,
then the log canonical model of (W,Θ) is the same as the log canonical
model of (X,B). Replacing (X,B) by (W,Θ) we may assume that
(X, f−1

∗ B′ + Ex(f)) is log smooth and g : X 99K Xc is a morphism.
Replacing (X ′, B′) by (X, f−1

∗ B′+Ex(f)), we may assume thatX = X ′.
Let A = g∗(KX + B), then A is ample and KX + B − g∗A ≥ 0. Let

L = B′ −B ≥ 0 and S a component of L with coefficient a > 0. Let

v(t) = vol(g∗A+ tS),

then v(t) is a non-decreasing function of t and

v(0) = vol(g∗A) = vol(KX+B) = vol(KX+B′) ≥ vol(g∗A+L) ≥ vol(g∗A+aS) = v(a).

Therefore v(t) is constant for t ∈ [0, a]. By [LM09, 4.25 (iii)] we have

1

n

dv

dt
|t=0 = volX|S(g∗A) ≥ S · g∗An−1 = g∗S · An−1

where n = dimX. But then g∗S = 0. It follows that every component
of L is exceptional for g and so g is the log canonical model of (X,B′).

�

Remark 5.46. If H is ample, then H+ tS is ample for 0 < t� 1 and
so

1

n

dv

dt
|t=0 = lim

t→0

(H + tS)n −Hn

nt
= Hn−1 · S = volX|S(H).

5.5. Adjunction. Let (X,S+B) be a pair where S is a prime divisor
not contained in the support of B, and Sν → S the normalization, then
we define the different as follows.

KSν + DiffSν (B) = (KX + S +B)|S.
In practice, to compute DiffSν (B), we consider a log resolution f :
X ′ → X of (X,S +B) and we write KX′ + S ′ +B′ = f ∗(KX + S +B)
where S ′ = f−1

∗ S. We define DiffS(B) = B|S and we have

KSν + DiffSν (B) = (f |S)∗(KS′ + DiffS(B)).

For example if X is the cone over a rational curve of degree n and S
is a line on S, then the blow up of the vertex P gives a log resolution
f : X ′ → X with exceptional divisor E. We have KX′ + S ′ + (1 −
1/n)E = f ∗(KX + S). (To check this observe that E2 = −n and
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−2 = (KX′ + E) · E = (f ∗(KX + S) + 1/nE − S ′) · E = −1 − 1 as
required). But then

(f |S′)∗((KX′+S
′+(1−1/n)E)|S′) = (f |S′)∗(KS′+(1−1/n)P ′) = KS+(1−1/n)P

and hence DiffS(0) = (1 − 1/n)P . In general, computing the differ-
ent can be reduced to a computation about surfaces. When X is a
log canonical surface, one can perform these computations explicitely.
Shokurov shows the following.

Lemma 5.47 (Shokurovs Log Adjunction Formula). Let (X,S + B)
be a log canonical surface where B =

∑
biBi and S is a prime divisor

with normalization Sν → S, then

(KX + S +B)|Sν = KSν + DiffSν (B) = KSν + DiffSν +B|Sν

where the coefficients of DiffSν (B) are 1 or of the form (n − 1 +∑
aibi)/n ∈ [0, 1] for some ai ∈ N. In particular if the coefficients

of B are in the set I, then the coefficients of DiffSν (B) are in the set
D(I).

5.6. Deformation invariance of plurigenera.

Theorem 5.48. If (X,B) is a snc pair and X → T is a morphism
such that (X,B) is log smooth over T , then

(1) h0(Xt,OXt(m(KXt+Bt))) is independent of t ∈ T . In particular

f∗OX(m(KX +B))→ H0(Xt,OXt(m(KXt +Bt)))

is surjective for all t ∈ T .
(2) If there is a point t ∈ T such that (Xt, Bt) has a good minimal

model, then (X,B) has a good minimal model over T and every
fiber has a good minimal model. Furthermore, the relative log
canonical model of (X,B) over T gives the relative log canonical
model for each fiber.

Proof. See [HMX14b, 1.2, 1.4]. �

6. Boundedness of pairs of log general type

Theorem 6.1. Fix d ∈ N and I ⊂ [0, 1] a DCC set whose only accu-
mulation point is 1. Let Pd,I be the set of all projective log canonical
models (X,B) such that dimX = d and B ∈ I.

(1) There exists an integer md,I depending only on d, I such that if
(X,B) ∈ Pd,I , then |m(KX +B)| is birational for all m ≥ md,I .

(2) The set Vd,I := {vol(KX +B)|(X,B) ∈ Pd,I} is a DCC set.
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(3) For any v ∈ Vd,I , there exists a projective morphism of quasi-
projective varieties X → T and a pair (X ,B) such that if
(X,B) ∈ Pd,I and vol(KX + B) = v, then (X,B) ∼= (Xt,Bt)
for some t ∈ T .

Remark 6.2. Let I ′ = I ∪ {1} ⊂ [0, 1], then the set Vd,I = {vol(KX +
B)} where (X,B) are projective log smooth d-dimensional log pairs with
B ∈ I ′. This is because given a pair (X,B) ∈ Pd,I we can consider a
log resolution ν : X ′ → X and the divisor B′ = ν−1

∗ B + Ex(ν) so that
KX′ +B′ − ν∗(KX +B) = E where E is effective and exceptional and
hence h0(m(KX′ +B′)) = h0(m(KX +B)) and in particular vol(KX′ +
B′) = vol(KX +B).

Conjecturally, if (X,B) is a log smooth pair with vol(KX + B) > 0,
then it has a log canonical model X̄ = Proj(R(KX +B)) and vol(KX +
B) = vol(KX̄ + B̄).

Remark 6.3. Suppose that (X,B) is a semi log canonical pair and
let ν : ∪(Xi, Bi) → (X,B) be the normalization. If B ∈ I, then
Bi ∈ I ′ = I ∪ {1} ⊂ [0, 1] and vol(KX + B) =

∑
vol(KXi + Bi)

is a sum of elements in the DCC set Vd,I′. It is easy to see that if
vol(KX + B) = v is fixed, then it can be written in finitely many ways
as a sum of elements of Vd,I′. This implies that (the normalization of)
semi-log canonical models of fixed volume with coefficients in a fixed
DCC set also form a bounded family.

Corollary 6.4. Fix d and C a DCC set, then there exists a number
1 > τ > 0 such that if (X,B) is a d-dimensional log canonical pair
such that KX +B is big, then KX + τB is big.

Proof. By Theorem 6.1, there exists an integer m = md,C such that
|m(KX + B)| is birational. Replacing X by an appropriate birational
model, we may assume that |m(KX + B)| = |H|+ F where H is base
point free and F ≥ 0 is the fixed locus. Consider the birational map
f : X → Z ⊂ PN = |H| so that f ∗OZ(1) = H. Pick x, x′ ∈ X general
points and H1, . . . , Hd+1 the pullbacks of general hyperplanes through
f(x), and H ′1, . . . , H

′
d+1 the pullbacks of general hyperplanes through

f(x′). We then have that x, x′ are isolated points in the cosupport of
J (X, d

d+1

∑
(Hi +H ′i)) and so, since by Nadel vanishing

H1(OX(KX + (2d+ 1)H)⊗ J (X,
d

d+ 1

∑
(Hi +H ′i)) = 0
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it follows that H0(KX + (2d + 1)H) → Cx,x′ is surjective and in par-
ticular |KX + (2d+ 1)m(KX +B)| is birational and hence big. Since

KX + (2d+ 1)m(KX +B) = (1 + (2d+ 1)m)(KX +
(2d+ 1)m

1 + (2d+ 1)m
B)

the assertion follows letting τ = (2d+ 1)m/(1 + (2d+ 1)m). �

Exercise 6.5. Show that if X is a smooth projective variety of dimen-
sion d and M is a big Cartier divisor such that |M | is base point free,
then |KX + (2d+ 1)M | is birational and hence KX + (2d+ 1)M is big.

Corollary 6.6 (ACC for Pseudo-effective thresholds). Fix d ∈ N and
C ⊂ [0, 1] a DCC set. Consider the set of all pseudo-effective thresholds

Td,C = {τ(Xi, Bi;Ci)}
where (Xi, Bi) is a d-dimensional log canonical pair, Ci ≥ 0 belongs to
a base point free linear series, Bi ∈ C and τ(Xi, Bi;Ci) is the pseudo-
effective threshold

τ(Xi, Bi;Ci) = inf{t ≥ 0|KXi +Bi + tCi is big}.
Then Td,C is an ACC set.

Proof. Suppose to the contrary that we have an increasing set of pseudo-
effective thresholds ti = τ(Xi, Bi;Ci). Let t = lim ti, thenKXi+Bi+tCi
is big and the coefficients of Bi + tCi belong to the DCC set C ′ =
C ∪{t}. We may assume that the pairs (Xi, Bi + tCi) are log canonical
and so by Corollary 6.4 there exists a number 0 < τ < 1 such that
KXi + τ(Bi + tCi) is big and hence so is KXi +Bi + tiCi for any i� 0
(as τ(Bi + tCi) ≤ Bi + tiCi). This is a contradiction. �

The above results are closely related to the following conjecture of
Shokurov.

Theorem 6.7. Fix n ∈ N and C ⊂ [0, 1] a DCC set. let LCTn(C) =
{lct(X,B;M)} where (X,B) is log canonical, B,M ∈ C. Then LCTn(C)
satisfies the DCC.

Proof. Suppose that there is a sequence of d-dimensional log canonical
pairs (Xi, Bi) and divisors 0 6= Mi ≥ 0 such that Bi,Mi ∈ C and
ti = lct(Xi, Bi;Mi) is an increasing sequence. Replacing (Xi, Bi) by
dlt models, we may assume that Xi is dlt and Q-factorial. Since C is
a DCC set, it has a positive minimum say c > 0 and so ti ≤ 1/c. Let
t = lim ti. Clearly t > ti. For all i > 0 let νi : Yi → Xi be the proper
birational morphism extracting a unique divisor Ei of discrepancy −1
with center a minimal non klt center of (Xi, Bi + tiMi). Cutting by
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hyperplanes, we may assume that this minimal non klt center is a closed
point xi ∈ Xi. We may assume that ρ(Yi/Xi) = 1 and we define

KEi + ∆i = (KYi + Ei + ν−1
i,∗ (Bi + tiMi))|Ei ,

KEi + ∆′i = (KYi + Ei + ν−1
i,∗ (Bi + tMi))|Ei .

Note that the coefficients of Bi + tiMi and Bi + tMi are in the DCC
set C ′ = C × {1, t, ti1, t2, . . .}. and hence the coefficients of ∆i and ∆′i
are in the DCC set D(C ′). Since lim ti = t, KEi + ∆′i is log canon-
ical by induction on the dimension (otherwise lct(Ei, 0; ∆′i) < 1 and
lim lct(Ei, 0; ∆′i) = 1 contradicting the ACC for LCT’s). Since t > ti
and ρ(Yi/Xi) = 1, we have that

KEi + ∆′i = (KYi + Ei + ν−1
i,∗ (Bi + tMi))|Ei = (t− ti)ν−1

i,∗Mi|Ei
is ample and hence KEi + ∆′i is ample. We claim that there exists a
number τ < 1 such that KEi + τ∆′i is big (see Corollary 6.4) below (in
fact τ =). But then ∆i ≥ τ∆′i for i� 0 so that

KEi + τ∆′i ≤ KEi + τ∆i ∼Q 0

which is an obvious contradiction.
�

The first step in proving Theorem 6.1 is to prove that the pairs
(X,B) ∈ Pd,I with vol(KX +B) = v are log birationally bounded.

Definition 6.8. A set of log pairs (X,B) ∈ I is log birationally bounded
if there exists a log pair (X ,B) and a projective morphism X → T such
that for any pair (X,B) ∈ I, there is a t ∈ T and a birational map
f : X 99K Xs such that the support of the strict transform of B plus
the Xs 99K X exceptional divisors are contained in the support of B.

Theorem 6.9. Fix d ∈ N,v > 0, and I a DCC set. Let Qd,v,I be the
set of projective log canonical pairs (X,B) such that dimX = d, B ∈ I
and vol(KX +B) ≤ v, then Qd,v,I is birationally bounded.

Proof. As in the proof of Theorem 3.1, it suffices to show that there
exists an integer md,v,I = O(v−1/d) such that m(KX + B) is birational
for any m ≥ md,v,I (this means that md,v,I ≤ Av−1/d + B for some
constants A,B depending on d, I but not on v). Suppose in fact that
such an integerm = md,v,I exists, then |m(KX+B)| induces a birational
map whose image Z has bounded degree

degZ ≤ vol(m(KX +B)) = mdv ≤ (Av−1/d +B)dv ≤ (A+ uB)d

where u = max{v1/d, 1}. Fix v > 0, then there is a family Z → T
(depending on I, d, v) such that if vol(KX + B) ≤ v, then Z = Zt for
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some t ∈ T . This explains why X is birationally bounded, but why
is the pair (X,B) log birationally bounded? Replacing (X,B) by an
appropriate birational model, we may assume that

φ = φKX+m(KX+B) : X → Z

is a birational morphism (note that we may apply Exercise 6.5 and
replace m by (2d+ 1)m). Thus we may write

|KX +m(KX +B)| = |M |+ E,

whereM is a big and base point free Cartier divisor and E is an effective
R-divisor. Let H = OZ(1) be the very ample divisor on Z such that
φ∗H = M . Note that

vol(KX +m(KX +B)) ≤ vol((m+ 1)(KX +B)) ≤ 2dv.

Fix Γ ∈ |bKX +m(KX +B)c|, δ be the smallest positive element in C,
and let

α = max{1

δ
, 2(2d+ 1)}.

Let D0 be the sum of the components of B and Γ that are not φ
exceptional, then

D0 ≤ δ(B + Γ).

Note that there is a divisor C ≥ 0 such that

δ(B + Γ) + C ∼Q δ(m+ 1)(KX +B).

Since φ is a morphism and M is base point free, by Lemma 6.12, we
have that

φ∗(Bred) ·Hd−1 ≤ D0 · (2(2d+1)M)d−1 ≤ 2dvol(KX +D0 +2(2d+1)M)

≤ 2dvol(KX + α(B + Γ) + 2(2d+ 1)(M + E +B))

≤ 2dvol(KX+B+(α+2(2d+1))(m+1)(KX+B)) ≤ 2d(1+2α(m+1))dvol(KX+B)

≤ 23dαdvol((m+ 1)(KX +B)) ≤ 24dαdv.

The rest of the proof also closely follows the proof of Theorem 3.1,
but there is a key difficulty that appears when we try to bound the
volume of KX + B along a non-klt center V . Assume that (X,B) is
as above (dimX = d, B ∈ I and vol(KX + B) = v) and for simplicity
KX+B is ample. Suppose that D ∼Q λ(KX+B) where J (X,D) = IV
near a general point x ∈ V ⊂ X. We must find a log canonical pair
(V,BV ) such that

(1) KV +BV is log canonical, big and BV ∈ J for some DCC set J
and

(2) (KX +B +D)|V ≥ KV +BV .
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It is clear that (KX +B+D)|V is big, however (V,BV ) is typically not
lc and we have no control over the coefficients of D and hence of BV .
Instead we proceed as follows. Let V ν → V be the normalization and
V ′ → V a resolution,

D(I) := {a ≤ 1|a =
m− 1−

∑
it

m
, m ∈ N, it ∈ I}

be the derived set of I.

Exercise 6.10. Show that if I is a DCC set then so is D(I).

Claim 6.11. There exists a divisor Θ on V ν, with Θ ∈ {1 − t|t ∈
LCTd−1(D(I)) ∪ 1} such that

(1) (KX +B +D)|V ν − (KV ν + Θ) is PSEF and
(2) if x ∈ V ⊂ X is a general point, then KV ′ + Θ′ ≥ (KX +

B)|V ′ where Θ′ is the strict transform of Θ plus the V ′ → V ν

exceptional divisors.

Granting the claim, since KX +B is big, it follows that KV ′ + Θ′ is
also big. By Theorem 6.7 in dimension ≤ d−1, the set of log canonical
thresholds

{t ∈ LCTd−1(D(I)) ∪ 1}
is an ACC set (any non-decreasing sequence is eventually constant) and
so, the coefficients of Θ′ belong to a DCC set J . But then by Theorem
6.1 in dimension ≤ d−1, the volume of KV ′+Θ′ is bounded from below
(by a constant), and so proceeding as in the proof of Theorem 3.1,
after finitely many steps, we may assume that dimV = 0 as required.
(In more detail, if vol(KV ′ + Θ′) > C > 0, then there is a divisor
DV ′ ∼ λ′(KV ′ + Θ′) such that

(1) multx′(DV ′) > dimV , where x′ ∈ V ′ is a general point, and
(2) λ′ < dimV/C1/d.

Note that if h : V ′ → V is the induced morphism, then there is a
divisor D′ on X such that

(1) D′|V ≥ h∗DV ′ (on an open subset x′ ∈ U ⊂ V ), and
(2) D′ ∼Q λ

′(KX +B +D) ∼Q λ
′(1 + λ)(KX +B).

by Proposition 2.40, the non klt locus of (X,D+(1−ε)B+B′) contains
x′ but does not contain V . Replacing D by D+(1−ε)D′ and repeating
this process at most d− 1 times, we may assume that x′ is an isolated
component of J (X,B + D). It follows that |m(KX + B)| defines a
birational map for any m ≥ Avol(KX +B)−1/d+B where A,B > 0 are
constants.

To gain some intuition on why the above claim works, we begin by
defining Θ. After perturbing D, we may assume that (X,B + D) is
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log canonical at the generic point of V and has a unique non-klt center
S dominating the generic point of V . By Theorem 5.44 there exists a
birational morphism ν : Y → X such that Y is Q-factorial, if E is a ν-
exceptional divisor, then aE(X,B+D) ≤ −1, and S is a ν exceptional
divisor. We write

KY + S + Γ = ν∗(KX +B) + E, KS + Φ = (KY + S + Γ)|S,

KY +S+Γ+Γ′ = ν∗(KX+B+D)+E, KS+Φ′ = (KY +S+Γ+Γ′)|S.

Assume for simplicity that S is normal. Notice that Γ ∈ I and so Φ ∈
D(I). For any codimension 1 point P ∈ V ν define tp = lctηP (S,Φ; f |∗SP )
where the log canonical threshold is computed over ηP the generic point
of P . We then let Θ =

∑
(1− tP )P and define Θ′ similarly for (S,Φ′).

By Kawamata subadjunction (KX +B+D)|V ν − (KV ν +Θ′) is pseudo-
effective. Since Θ′ ≥ Θ, it follows that (KX +B +D)|V ν − (KV ν + Θ)
is pseudo-effective. (1) of the claim follows.

Part (2) of the claim is much more technical. However, suppose that
V = S is a divisor on X, then Θ = Φ and so KV +Θ = (KX+S+Γ)|S =
(KX+B)|S+E|S, however note that E = (1−b)S where b = multS(B).
Since x ∈ S ⊂ X is a very general point, we may assume that S varies in
a family covering X and hence S ∼ S ′ 6= S and so S|S ∼ S ′|S ≥ 0. �

Lemma 6.12. Let X be a normal projective variety of dimension d
and M a base point free Cartier divisor such that the induced morphism
φM is birational. Let H = 2(2d+ 1)M and D a sum of distinct prime
divisors, then

D ·Hd−1 ≤ 2dvol(KX +D +H).

Proof. We may discard all φM -exceptional components of D. Let f :
Y → X be a log resolution of the pair (X,D) and G the strict transform
of D on Y , then

D ·Hd−1 = G · (f ∗H)d−1 and

vol(KY +G+ f ∗H) ≤ vol(KX +D +H).

Therefore, replacingX,D,M by Y,G, f ∗M , we may assume that (X,D)
is log smooth and that the components of D are disjoint.

We may write M ∼Q A+B where A is ample and B ≥ 0 has no com-
ponents in common with D (as no component of D is ΦM exceptional).
But then KX +D + δB is dlt for any 1� δ > 0 and so

H i(OX(KX + E + pM)) = 0 ∀p, i ∈ N
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and any integral Weil divisor 0 ≤ E ≤ D.1 Let

Am = KX +D +mH, then H i(OD(Am)) = 0,

for all i,m > 0. therefore, there is a degree d− 1 polynomial

p(M) = H0(OD(Am)).

By Exercise 6.5, A1 = KX + D + H is big and so KX + D + H has a
log canonical model X 99K Xlc (Theorem 5.40). Thus there is a degree
d polynomial

Q(m) := h0(OX(2mA1)) = h0(OXlc(2m(KXlc +Dlc +Hlc))),

for any sufficiently divisible integer m. The leading coefficients of P (m)
and Q(m) are

D ·Hd−1

(d− 1)!
and

2dvol(KX +D +H)

d!
.

If D =
∑
Di where the Di are prime and Mi = (D−Di+(2d+1)M)|Di ,

then

H0(OX(KX +D + (2d+ 1)M))→ H0(ODi(KDi +Mi)),

is surjective, and so the general section of H0(OX(KX+D+(2d+1)M))
does not vanish identically along any component of D. Let

s ∈ H0(OX(KX+D+(2d+1)M)), and l ∈ H0(OX((2d+1)M))

be sections not vanishing identically along any component of D. If

t = s⊗2d−1 ⊗ l ∈ H0(OX(2dA1 − Am)),

then t induces an injection H0(OX(Am)) → H0(OX(2mA1)). Since
H1(OX(Am −D)) = 0, we have a surjection

H0(OX(Am))→ H0(OD(Am))

and so

t|D ·H0(OD(Am)) ⊂ Im
(
H0(OX(2mA1))→ H0(OD(2mA1))

)
.

Thus
P (m) ≤ h0(OX(2mA1))− h0(OX(2mA1 −D)).

Since h0(OX(2KX +D + 2H)) 6= 0, we have

Q(m− 1) = h0(OX(2(m− 1))A1)) ≤ h0(OX(2mA1 −D)).

Therefore P (m) ≤ Q(m)−Q(m−1) and the claim follows by comparing
the leading coefficients of P (m) and Q(m). �

1In fact E + pM ∼Q (1 − ε)E + δB + εE + δA where, for 0 < ε � δ � 1,
(X, (1− ε)E + δB) is klt and εE + δA is ample.
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Proof that Theorem 6.9 implies Theorem 6.1. By the proof of Theorem
6.9 to prove (1), it suffices to show that the set Vd,I has a positive lower
bound. In particular it suffices to show (2).

We will now prove (2). Let f : Z → T be the family (depending on
d, I, v) constructed in Theorem 6.9. Replacing T be a closed subset, we
may assume that the pairs (X,B) ∈ Pd,I such that vol(KX + B) ≤ v
are birational to fibers (Zt,Bt) for some t ∈ T . We may assume that
(Z,B) is log smooth over T . Blowing up (X,B), we may assume that
f : X → Zt is a morphism. Unluckily it is not clear that vol(KX+B) =
vol(KZt + Bt) (even though the inequality ≤ is clear). Notice however
that

Claim 6.13. We have

vol(KX +B) = vol(KX +B ∧ Lf∗B,X)

where

Lf∗B,X = −
∑

E⊂X|aE(Zt,f∗B)≤0

aE(Zt, f∗B)E.

Proof. Notice that

H0(m(KX +B)) ⊂ H0(m(KZt + f∗B)) = H0(m(KX + Lf∗B,X))

so that every section ofH0(m(KX+B)) actually belongs toH0(m(KX+
B ∧ Lf∗B,X)). �

Notice that as (Zt,Bt) has simple normal crossings and f∗B ≤ Bt,
every divisor in Lf∗B,X may be obtained by a finite sequence of blow ups
along strata of the strict transform of Bt and exceptional divisors. Let
X ′ → Zt be a sequence of blow ups along strata of the strict transform
of Bt and exceptional divisors such that each component of Lf∗B,X is a
divisor on X ′ and let B′ be the strict transform of B plus the X ′ 99K X
exceptional divisors.

Claim 6.14. We have vol(KX +B) = vol(KX′ +B′).

Proof. Let g : W → X be a resolution of the indeterminacies of X 99K
X ′. Clearly vol(KX + B) = vol(KW + MB,W ) where MB,W = g−1

∗ B +
Ex(g). It is easy to see that MB,W ≥MB′,W ∧Lf∗B,W . We only need to
check divisors E that are exceptional for W → X ′ but not for W → X,
but for these divisors we have multE(Lf∗B,W ) = 0 and so the inequality
follows. �

Consider now the connected component of T containing t, t0 ∈ T
a fixed point of this component and let Z ′ → Z be the sequence of
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blow ups of Z along strata of MB such that Z ′t ∼= X ′. Let B′ be the
Q-divisor such that B′t = B′. By Theorem 5.48, we have

vol(KX +B) = vol(KX′ +B′) = vol(KZ′t + B′t) = vol(KZ′t0
+ B′t0).

It follows that we may assume that (X,B) is obtained from a fixed pair
(Z,BZ) via a finite sequence of blow ups (here we assume that BZ is
reduced, the support of B is contained in BBZ ,X , and the coefficients
of B belong to I ∪ {1}).

Suppose now by way of contradiction that we have a sequence of
pairs (Xi, Bi) and morphisms fi : Xi → Z such that fi,∗Bi ≤ BZ and
vol(KXi + Bi) is strictly decreasing. Since the coefficients of Bi are in
a DCC set, we may assume that (after passing to a subsequence) the
coefficients of fi,∗Bi are non decreasing and in particular they admit
a limit. Let ∆ = lim fi,∗Bi be this limit. Suppose that b∆c = 0
and let Z ′ → Z be a terminalization of (Z,∆). We may assume that
ν : Z ′ → Z is given by a sequence of blow ups along strata of M∆ and
writing KZ′ + ∆′ = ν∗(KZ + ∆), then ∆′ ≥ 0 and (Z ′,∆′) is terminal.
Replacing Xi by a higher model, we may assume that f ′i : Xi 99K Z ′ is
a morphism. Passing to another subsequence, we may assume that the
coefficients of f ′i,∗Bi are non-decreasing. Since (Z ′,∆′) is terminal and

f ′i,∗Bi ∧ Lfi,∗Bi,Z′ ≤ ∆′,

we have that (Z ′, f ′i,∗Bi ∧ Lfi,∗Bi,Z′) is also terminal and hence

vol(KXi+Bi) ≤ vol(KZ′+f
′
i,∗Bi) = vol(KZ′+f

′
i,∗Bi∧Lfi,∗Bi,Z′) ≤ vol(KXi+Bi).

(the second equality follows as in Claim 6.13 and the last inequality
since KZ′+f ′i,∗Bi∧Lfi,∗Bi,Z′ is terminal and (f ′i)

−1
∗ (f ′i,∗Bi∧Lfi,∗Bi,Z′) ≤

Bi.) Since f ′i,∗Bi ≥ f ′i+1,∗Bi+1, it follows that

vol(KXi+Bi) = vol(KZ′+f
′
i,∗Bi) ≥ vol(KZ′+f

′
i+1,∗Bi+1) = vol(KXi+1

+Bi+1).

This contradicts the fact that vol(KXi +Bi) is decreasing.
Finally, we prove (3). Fix v = vol(KXc

i
+ Bc

i ). Assume by way
of contradiction that (Xc

i , B
c
i ) (and any infinite subsequence thereof)

is an unbounded sequence. Arguing as above (replacing Xc
i by an

appropriate birational model Xi → Xc
i ) , we may assume that fi :

Xi → Zti is a birational morphism and fi,∗Bi is supported on Bti .
passing to a subsequence, we assume that all ti belong to the same
component of T . We define ∆i on Z as the divisor supported on B
such that ∆i|Zti = fi,∗Bi. Passing to a subsequence, we may assume
that ∆i ≤ ∆i+1. let ∆ = lim ∆i. Assume that (Z,∆) is terminal (see
[HMX14b] for details of the log canonical case). Let ν : Z ′ → Z be a
terminalization so that KZ′ + ∆′ = ν∗(KZ + ∆) where (Z ′,∆′ ≥ 0) is
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terminal. We may assume that f ′i : Xi 99K Z ′ti is also morphism. As
observed above,

v = vol(KXi +Bi) = vol(KZ′ti
+ (∆i)ti) = vol(KZ′t0

+ (∆i)t0)

and so

vol(KZ′ti
+ ∆ti) = vol(KZ′t0

+ ∆t0) = lim vol(KZ′ti
+ (∆i)t0) = v.

By Lemma 5.45, Xc
i coincides with the log canonical model of (Zti ,∆ti).

Consider now the log canonical model g : Z 99K Zc for (Z,∆) over
T . This log canonical model exists by Theorem 5.48 and (Xc

i , B
c
i ) =

(Zc, g∗∆ti). �

7. Rational curves on varieties with negative KX

We follow the treatment of [KM98, §1]

Theorem 7.1. Let X be a smooth variety and f : Y → X a projective
birational morphism. For any x ∈ X, the fiber f−1(x) is either a point
or is covered by rational curves.

Proof. Suppose that dimX = 2. Consider the rational map f−1 :
X 99K Y and resolve its indeterminacies by a finite sequence of blow
ups (at smooth points), ν : X ′ → X so that g : X ′ → Y is a morphism.
Then ν−1(x) is a union of rational curves and so f−1(x) = g(ν−1(x))
is also a union of (possibly singular) rational curves. The general case
was shown by Abhyankar (in 1956). �

Corollary 7.2. Let g : X 99K Y be a rational map and Z ⊂ X × Y
be the closure of the graph of g, and p, q the projections. If x ∈ X is
a smooth point such that g is not a morphism at x, then q(p−1(x)) is
covered by rational curves.

Proof. By Theorem 7.1, p−1(x) is either a point or is covered by rational
curves. If p−1(x) is a point, then it is easy to see that X is isomorphic
to Z on a neighborhood of x and hence that g is a morphism at x ∈ X.
Therefore q(p−1(x)) is covered by rational curves. �

Corollary 7.3. Let g : X 99K Y be a rational map which is not every-
where defined. If X is smooth and Y is projective, then Y contains a
rational curve.

Proof. Immediate from Corollary 7.2. �

Lemma 7.4. Let f : Y → Z be a projective morphism such that Y is
irreducible, f is surjective and every fiber is connected of dimension n.
If g : Y → X is a morphism such that g(f−1(z0)) is a point for some
z0 ∈ Z, then g(f−1(z)) is a point for every z ∈ Z.
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Proof. Let W be the image of f × g : Y → Z × X and f = p ◦ h :
Y → W → Z be the induced morphism, then dim p−1(z0) = 0 and
so by semicontinuity of the fiber dimension, there is a neighborhood
z0 ∈ U ⊂ Z such that dim p−1(z) = 0. But then the fibers of Y → W
over points of p−1(U) are n-dimensional and thus every fiber of Y → W
has dimension ≥ n. Since h−1(w) ⊂ f−1(p(w)) while dimh−1(w) ≥ n
and dim f−1(p(w)) = n, it follows that h−1(w) is a union of components
of f−1(p(w)). But then since h−1(p−1(p(w))) = f−1(p(w)) it follows
that each component of f−1(p(w)) maps to a point in (p−1(p(w)) and
so (p−1(p(w)) is finite and hence a single point (since f has connected
fibers).

�

Corollary 7.5. [Bend and Break] let X be a projective variety, p ∈
C a point on a projective curve and g0 : C → X be a non-constant
morphism. Suppose that there is a smooth pointed curve 0 ∈ D and a
morphism G : C ×D → X such that

(1) G|C×0 = g0,
(2) G({p} ×D) = g0(p), and
(3) G|C×{t} 6= g0 for general t ∈ D,

then there is a morphism g1 : C → X, and a positive linear combination
of rational curves Z =

∑
aiZi such that

(1) (g0)∗(C) ≡ (g1)∗(C) + Z, and
(2) g0(p) ∈ ∪iZi.

Therefore X contains a rational curve through g0(p).

Proof. We may assume that D ⊂ D̄ is projective (after compactifying)
and we have a rational map Ḡ : C × D̄ 99K X. We claim that Ḡ is not
defined at some point of p× D̄. If this were not the case, then there is
a neighborhood p ∈ U ⊂ C, such that Ḡ is defined on U × D̄. Since
Ḡ(p×D̄) is a point, by Lemma 7.4, Ḡ(p′×D̄) is a point for any p′ ∈ U .
But then Ḡ is constant on U × D̄ which is impossible.

Let S be the normalization of the closure of the graph of Ḡ, π : S →
C × D̄, GS : S → X and h : S → C × D̄ → D̄. By what we have seen
above, there is a point (p, d) ∈ C×D̄ such that π is not an isomorphism
over (p, d). Let h−1(d) = C ′ + E where C ′ = π−1

∗ C × {d} and E is π-
exceptional and hence a union of rational curves by Theorem 7.1. we
let g1 = GS|C′ and Z = GS(E). Then g0,∗(C) is algebraically equivalent
to g1,∗(C) + Z. �

Note that if C is rational, Corollary 7.5 gives no new information.
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Lemma 7.6. [Bend and Break for rational curves] let X be a projective
variery and g : P1 → X a nonconstant morphism. Suppose that there
is a smooth pointed curve 0 ∈ D and a morphism G : P1 × D → X
such that

(1) G|P1×0 = g0,
(2) G({0} ×D) = g0(0), G({∞} ×D) = g0(∞), and
(3) G|P1×D 6= g0 is a surface.

Then g0,∗(P1) is algebraically equivalent to a reducible curve or a mul-
tiple curve.

Proof. We may assume that D ⊂ D̄ is projective (after compactify-
ing) and q : S → D̄ is a P1 bundle containing P1 × D extending the
projection P1 × D → D. Let Ḡ : S 99K X be the induced rational
map and r̃ : S̃ → S a sequence of blow ups such that the induced map
G̃ : S̃ → X is a morphism. We proceed by induction on the number k
of blow ups in r̃.

If k = 0, then Ḡ is a morphism. Let H be ample on X and C0, C∞ ⊂
S be the closures of {0} ×D and {∞} ×D. We have

(Ḡ∗H)2 > 0, (C0 · Ḡ∗H) = 0 = (C∞ · Ḡ∗H).

But then (C0)2 < 0 and (C∞)2 < 0 (by the Hodge Index Theorem) and
so Ḡ∗H,C0, C∞ are linearly independent in NS(X). However, S is a
P1 bundle and so this group is 2 dimensional (generated by a fiber and
a section). This is the required contradiction.

Therefore k > 0 and we let r : S ′ → S be the first blow up (say at
P ∈ q−1(y)) and r′ : S̃ → S ′ the induced morphism. We may assume
that G̃∗((q◦ r̃)∗(y)) is irreducible and reduced (otherwise the statement
holds). Let F1 be the exceptional curve of r and F2 the strict transform
of q∗y so that (q◦r)∗(y) = F1 +F2 is the union of two -1 curves meeting
transversely at Q = F1 ∩ F2.

We claim that Ḡ′ : S ′ → X is a morphism along F2. Otherwise Ḡ′ is
undefined at P ′ ∈ F2. If P ′ 6= Q, then

G̃∗((q ◦ r̃)∗(y)) = G̃∗red(r̃−1(P )) + G̃∗red(r̃−1(P ′) + (effective cycle),

which is a contradiction. Thus P ′ = Q, and r′ extracts divisors over
Q. However each one of these divisors must appear with multiplicity
≥ 2 in r̃∗q∗(y) and hence must be contracted by G̃. Thus Ḡ′ : S ′ → X
is a morphism.

Let S ′ → S ′′ be the contraction of the -1 curve F2, then the indeter-
minacies of S ′′ 99K X can be resolved via k− 1 blow ups and so we are
done by induction. �
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Theorem 7.7. [Mori82] let X be a smooth projective variety such that
−KX is ample, then through every point x ∈ X there is a rational curve
D such that

0 < −(D ·KX) ≤ dimX + 1.

Proof. Let 0 ∈ C be a pointed curve and f : C → X be a non constant
morphism such that f(0) = x. The morphism f admits a deformation
space of dimension

≥ h0(C, f ∗TX)− h1(C, f ∗TX) = χ(C, f ∗TX) =

−(f∗C ·KX) + (1− g(C)) · dimX.

Suppose that this dimension is≥ m, then there exists anm-dimensional
pointed affine variety 0 ∈ Z and a morphism F : C×Z → X such that
F |C×{0} = f and F |C×{z} 6= F |C×{0} for 0 6= z ∈ Z. Fixing the image
of the base point 0 ∈ C is at most dimX conditions, the deformation
space of morphisms f : (C, 0)→ (X, x) has dimension

≥ h0(C, f ∗TX)− h1(C, f ∗TX)− dimX = −(f∗C ·KX)− g(C) · dimX.

This means that if −KX · f∗C > g(C) · dimX, then there is a non-
trivial one parameter family of deformations of C fixing f(0) = x.
This inequality is automatically satisfied by rational curves C ∼= P1. If
C is an elliptic curve, then let n : C → C be the morphism induced by
multiplication by an integer n ∈ N. We have

−((f ◦ n)∗C ·KX) = n2(f∗C ·KX) > dimX

as soon as n >
√

dimX. Thus a multiple of C moves with a fixed
point. If g(C) ≥ 2 then there are no endomorphisms of degree > 1 so
a similar approach does not work. However, in charactersitic p > 0 we
can use the Frobenius morphism.

Suppose for simplicity that X and C are defined by equations

h1, . . . , hr ∈ Z[x0, . . . , xn], c1, . . . , cs ∈ Z[y0, . . . , ym].

In this case we have morphisms X → Spec(Z) and C → Spec(Z). Note
that these morphisms are generically flat. Reducing modulo p (i.e.
taking the fiber over (p) ∈ Spec(Z) we get equations in Fp[x0, . . . , xn]
and Fp[y0, . . . , ym] which define projective varieties

Xp ⊂ PnF̄p , Cp ⊂ PmF̄p .

Note that for all but finitely many p ∈ Spec(Z), Xp and Cp are
smooth. The Frobenius morphism F = FPn : Pm → Pm is defined
by F (y0, . . . , ym) = (yp0, . . . , y

p
m) and similarly for F : Pn → Pn. No-

tice that hi(y0, . . . , ym)p = hi(y
p
0, . . . , y

p
m) and so we get a morphism
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FCp : Cp → Cp. Note that FCp induces a morphism of degree p which
is an isomorphism of topological spaces. The values of

(fp)∗Cp ·KXp , g(Cp), χ(TX |Cp)
are constant for almost all p. Consider the morphism

fp ◦ Fm
Cp : Cp → Cp → Xp,

then

(fp ◦ Fm
Cp)∗(Cp) ·KXp = Cp · (Fm

Cp)
∗f ∗pKXp = pmCp · f ∗pKXp .

Note that Cp · f ∗pKXp is a fixed negative number for almost all p. But
then the space of deformations of fp ◦ Fm

Cp
with a fixed point has di-

mension at least

−pmCp · f ∗pKXp − g(Cp) dimX > 0, for m� 1.

Fix x ∈ X, then arguing as above, we obtain a rational curve x ∈ Σp ⊂
Xp. If Σp · (−KXp) > dimX + 1, we have that the deformation space
of the corresponding morphism from the normalization Σ′p → Xp that
fixes two points p, p′ has dimension at least 2. Since automorphisms of
P1 fixing two points deform in a 1 parameter family, the image Σp must
move in Xp and so Σp is algebraically equivalent to a sum of rational
curves of lower degree. Therefore we may assume that Σp · (−KXp) ≤
dimX+1. It follows by standard arguments that there exists a rational
curve Σ ⊂ X such that Σ · −KX ≤ dimX + 1.

To see the last claim, note that a morphism P1
Fp → Xp. Since −KX

is ample, we may assume that a fixed multiple is very ample and hence
so is the corresponding multiple of −KXp . Since the degree of Σp is
bounded (by dimX + 1), we may assume that Σp → Xp ⊂ PnZ̄p is

defined by homogeneous forms (gp,0, . . . , gp,n) such that

hi(gp,0, . . . , gp,n) 1 ≤ i ≤ r.

We view this as a system of polynomial equations in the coefficients
of the polynomials gpj . Since these polynomials have a common solu-

tion for infinitely many primes p, they have a solution over Q̄ (or any
algebraically closed field).2 �

Theorem 7.8. Let X be a smooth Fano variety of dimension d and
Picard number ρ(X) = 1, then there is an open subset U ⊂ X such
that if x, y ∈ U , then x, y can be joined by an irreducible rational curve
of anticanonical degree at most d(d+ 1).

2These equations define a closed subset of PN
SpecZ. The projection to SpecZ is

proper and the image is dense and hence must contain the generic point.
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Proof. See [Kollár96, V Proposition 2.6]. The idea is to show that we
can connect x, y by a chain of rational curves of degree ≤ d(d+ 1) and
then show that this chain can be smoothed. �

Theorem 7.9. Fix d ∈ N then there exists a constant c = c(d) such
that if X be a smooth Fano variety of dimension d, then there is an
open subset U ⊂ X such that if x, y ∈ U , then x, y can be joined by a
chain of rational curves of anticanonical degree at most c.

Proof. See [KMM92]. �

7.1. Boundedness of smooth Fano varieties.

Theorem 7.10. Let X be a smooth complex projective variety of di-
mension d such that −KX is ample, then (−KX)d ≤ c(d) where c(d) is
the constant from Theorem 7.9. If moreover ρ(X) = 1, then (−KX)d ≤
(d(d+ 1))d.

Proof. Let x ∈ X be a general point. Assume that ρ(X) = 1. If
(−KX)d > (d(d + 1))d, then we may find a divisor D ∼ −kKX such
that multx(D) ≥ kd(d + 1) + 1. (In order to assume that k does
not depend on x ∈ X, we use the fact that C is uncountable.) By
Theorem 7.8, there is a rational curve C ⊂ X of anticanonical degree
≤ d(d + 1) passing through x and not contained in the support of D.
Since multx(D) > d(d+ 1), then

C · (−KX) =
1

k
C ·D ≥ kd(d+ 1) + 1

k
> d+ 1.

This is the required contradiction. �

Theorem 7.11. The set of smooth complex projective Fano varieties
of dimension d is bounded.

Proof. By the result of Anhern-Siu (Theorem 2.56), we know that B :=
KX−(1+

(
d+1

2

)
)KX is generated by global sections. Let n = 1−d

(
d+1

2

)
,

then by Kodaira vanishing nKX is 0-regular i.e. H i(nKX − iB) = 0
for i = 1, 2, . . . , d = dimX. By Lemma 7.12 below, it follows that
nKX + B = −((d + 1)

(
d+1

2

)
− 1)KX is very ample. By Theorem 7.11,

|nKX +B| embeds X as a subvariety PN of bounded degree. The claim
now follows from a Hilbert scheme type argument. �

Lemma 7.12. Let B be an ample and generated line bundle and A a
line bundle such that H i(A− iB) = 0 for all i > 0, then A+B is very
ample.
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Proof. We must show that A+B is generated and for any point x ∈ X,
OX(A + B) ⊗ mx is also generated. The first statement follows from
the arguments of Lemma 2.35 and so we focus on the second part. Let
V ⊂ H0(B) be a general d dimensional subset of sections vanishing
at x ∈ X. We may assume that if s1, . . . , sd is a basis of V , then
Z = V (s1, . . . , sd) is a zero dimensional scheme containing x. Consider
the corresponding Koszul complex E•

0→ OX(A−(d−1)B)⊗∧dV → OX(A−(d−2)B)⊗∧d−1V → . . .→ OX(A)⊗V

which is exact with cokernel OX(A+B)⊗ IZ . It suffices to show that
OX(A + B) ⊗ IZ is 0-regular. Notice in fact that since mx/IZ is zero
dimensional and so the short exact sequence

0→ OX(A+B)⊗ IZ → OX(A+B)⊗mx → mx/IZ → 0

easily implies that OX(A+B)⊗mx is also 0-regular.
Since H i(A− iB) = 0 for i > 0, it follows easily that H i(A−jB) = 0

for i > 0 and j ≤ i. Notice that H i(OX(A − (i − 1)B) ⊗ IZ) =
Hi(E•⊗OX(−iB)). We have Hk(E−j⊗OX(−iB)) = Hk(OX(A− (i+
j)B)) ⊗ ∧jV = 0 for k ≥ i + j. An easy spectral sequence argument
shows that Hi(E• ⊗OX(−iB)) for all i > 0. �

8. The Pseudo-effective cone

In this section we recall the proof of the following fundamental result
of Boucksom-Demailly-Paun-Peternell.

Theorem 8.1. Let X be a normal irreducible complex projective vari-
ety of dimension d, then the cones Mov(X) and Eff(X) are dual.

Recall that the pseudo-effective cone Eff(X) ⊂ N1(X)R is the clo-
sure of the big cone. A Q divisor G is big iff limsuph0(mG)/md > 0. It
is known that if G and G′ are numerically equivalent then G is big iff G′

is big. It is also known that if G is big, then the limit limh0(mG)/md

exists. We set vol(G) = limd!h0(mG)/md. The volume function can
be extended to a continuous function on the big cone and to a semi-
continuous function vol : N1(X)R → R≥0. We refer the reader to
[Lazarsfeld04] for a detailed discussion.

The cone of movable (or mobile) curve Mov(X) ⊂ N1(X)R is the
closure of the convex cone spanned by all curves of the for

f∗(A1 · · ·Ad−1)

where f : Y → X is a projective birational morphism and the Ai are
ample divisors on Y .
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Corollary 8.2. Let X be a smooth projective variety, then X is unir-
uled if and only if KX is not pseudo-effective.

Proof. By the arguments in the proof of Theorem 3.3, it is easy to see
that if X is uniruled, then KX is not pseudo-effective. Suppose in fact
that X is uniruled, then there exists a projective morphism f : Z →
T whose generic fiber is a rational curve and a dominant morphism
g : Z → X. Since KX is pseudo-effective and KZ = g∗KX + R where
R ≥ 0, it follows that KY is also pseudo-effective. But then KZ |Zt is
also pseudo-effective. However this is impossible since KZ |Zt ∼= KP1 =
OP1(−2) is not pseudo-effective.

Suppose now that KX is not pseudo-effective. By Theorem 8.1, there
is a curve γ ∈ Mov(X) such that KX · γ < 0 and hence we may find a
covering family of curves Ct such that KX · Ct < 0. By an argument
similar to the proof of Theorem 7.7, it follows that X is covered by
rational curves. �

Before proving the above theorem, we will need to recall several
results of independent interest. First of all we recall the notation of
asymptotic multiplier ideal sheaves. Let L be a line bundle on a smooth
projective variety and c > 0. The multiplier ideal shef J (c · |L|) is
computed as follows. let f : Y → X be a resolution of |L| so that
f ∗|L| = M +E where M is base point free and E plus the exceptional
divisor has simple normal crossings support. Then

J (c · |L|) = f∗OY (KY/X − bc · F c).
For any k ∈ N, we may assume that f is also a log resolution of |kL|.
Writing f ∗|kL| = Mk + Fk it is easy to see that Fk ≤ k · Fk and so

J (c·|L|) = f∗OY (KY/X−bc·F c) ⊂ f∗OY (KY/X−b
c

k
·Fkc) = J (

c

k
·|kL|).

Since X is Noetherian, the inclusions

J (c · |L|) ⊂ J (
c

2
· |2L|) ⊂ J (

c

2!
· |2!L|) ⊂ J (

c

3!
· |3!L|) ⊂ . . .

eventually stabilizes and we let

J (c · ||L||) = J (
c

k!
· |k!L|).

It is easy to see that J (c · ||L||) = J ( c
k
· |kL|) for any k sufficiently

divisible. These asymptotic multiplier ideals satisfy many useful prop-
erties.

Lemma 8.3. J (|L|) ⊂ J (||L||) and in particular

H0(L⊗ J (||L||)) = H0(L).
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Proof. The inclusion J (|L|) ⊂ J (||L||) was established above. It suf-
fices to check that H0(L⊗J (|L|)) = H0(L). The inclusion ⊂ is obvious.
Conversely, J (|L|) = f∗OY (KY/X − F ) ⊂ f∗OY (−F ) = b(L) where
b(L) is the base locus ideal of |L| given by the image of H0(L)⊗OX →
L⊗ b(L) ⊂ L. �

Proposition 8.4. If M −KX − cL is nef and big, then H i(M ⊗J (c ·
||L||)) = 0 for i > 0 and if M−KX− cL− (d+1)B is nef for an ample
and generated divisor B, then M ⊗ J (c · ||L||) is generated.

Proof. We have J (c·||L||) = J ( c
k
·|kL|) for some k sufficiently divisible.

The vanishing H i(M ⊗J (c · ||L||)) = 0 for i > 0 then follows immedi-
ately from Nadel vanishing and the global generation of M⊗J (c · ||L||)
follows from Castelnuovo Mumford regularity. �

Theorem 8.5. [Subadditivity of multiplier ideal sheaves] Let L be a
divisor on X with κ(L) ≥ 0. For l,m ∈ N and c > 0, we have

J (c · ||(m+ l)L||) ⊂ J (c · ||mL||) · J (c · ||lL||)

and in particular J (c · ||mL||) ⊂ J (c · ||L||)m.

Proof. We refer the reader to [Lazarsfeld04]. �

Theorem 8.6. [Fujita’s approximation Theorem] Let L be a big Q-
divisor on X an irreducible projective variety of dimension d. For
every ε > 0 there exists a projective birational morphism f : Y → X, an
ample Q-divisor A and an effective Q-divisor B such that f ∗L ∼Q A+B
and

vol(A) ≥ vol(L)− ε.

Proof. We follow [Lazarsfeld04]. After resolving the singularities of X,
we may assume that X is smooth and L is nef and big. It suffices to
show that there exists a nef Q-divisor A with the above properties. If
this is the case, then A is nef and big so that A ∼Q H + F where H is
ample and F ≥ 0. but then A − δF ∼Q (1 − δ)A + δH is ample and
lim vol(A− δF ) = vol(A).

Let B be a very ample divisor on X such that KX + (d + 1)B is
very ample. For any p ≥ 0 we set Mp = pL − KX − (d + 1)B and
Jp = J (||Mp||). Note that Mp is big for p� 0. In fact we have

Mp

p
= L− KX + (d+ 1)B

p
so that limvol(

Mp

p
) = vol(L).

In particular

vol(Mp) ≥ pd(vol(L)− ε) for p� 0.
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Lp⊗Jp is generated by global sections (by Proposition 8.4).By Theorem
8.5 J (||lMp||) ⊂ J (||Mp||)l. It follows that

H0(OX(lMp)) = H0(OX(lMp)⊗J (||Mp||)l) ⊂ H0(OX(lpL)⊗J (||Mp||)l)
and so

H0(OX(lMp)) ⊂ H0(OX(lpL⊗ J l
p)) ∀l > 0.

Let f : Y → X be a log resolution of Jp so that Jp · OY = OY (−Ep)
where Ep ≥ 0. Then f ∗(pL) − Ep is generated by global sections and
hence nef. Notice that

H0(OY (l(f ∗(pL)− Ep))) ⊃ H0(OX(plL)⊗ J l
p) ⊃ H0(OX(lMp)),

and so

(f ∗(pL)− Ep)d = vol(f ∗(pL)− Ep) ≥ vol(Mp) ≥ pd(vol(L)− ε).
But then the result follows letting A = (1/p)(f ∗(pL) − Ep) and B =
(1/p)Ep. �

The final result that we will need is the following.

Theorem 8.7. Let L be a big Q-divisor on a normal irreducible pro-
jective variety of dimension d. let f : Y → X be a projective birational
morphism, A an ample Q-divisor and B an effective Q-divisor such
that f ∗L = A+B. If H is a Q-divisor such that H ±L is ample, then

(Ad−1 ·B)2 ≤ C ·Hd · (vol(L)− vol(A)).

Proof. See [Lazarsfeld04, §11]. �

Proof of Theorem 8.1. It is clear that if D ≥ 0 is an effective R-divisor,
then D · f∗(A1 · · ·Ad−1) ≥ 0 and so

Mov(X) ⊂ Eff(X)∨.

We will now prove the reverse inclusion. Suppose by way of contradic-
tion thet there is a class ξ on the boundary of Eff(X) which is in the
interior of Mov(X)∨. Note that vol(ξ) = 0. Pick h an ample class such
that h ± ξ are ample and note that ξ − εh ∈ Mov(X)∨ for 0 < ε � 1
and so

ξ · γ
h · γ

≥ ε

for any mobile class γ. Since ξ + δh is big, for any 1 � δ > 0, by
Theorem 8.6, there is

fδ : Yδ → X, f ∗δ (ξ + δh) = Aδ +Bδ

where Aδ is ample, Bδ ≥ 0, and

(?) vol(Aδ) ≥ vol(ξ + δh)− δ2d ≥ 1

2
vol(ξ + δh) ≥ δd

2
· hd.

67



The class γδ = (fδ)∗(A
d−1
δ ) is movable and we have

(]) h · γδ = f ∗δ h · Ad−1
δ ≥ (hd)1/d · (Aδ)(d−1)/d

by the generalized Hodge inequalities. One sees that

ξ · γδ ≤ (ξ + δh) · γδ = f ∗δ (ξ + δh) · Ad−1
δ = Adδ +Bδ · Ad−1

δ .

By Theorem 8.7 and equation (?) above, we have that

Bδ · Ad−1
δ ≤ (C1 · hd · (vol(ξ + δh)− vol(Aδ)))

1/2 ≤ C2 · δd

where C1, C2 are constants independent of δ. Inequalities (?) and (])
imply that

([)
ξ · γδ
h · γδ

≤ Adδ + C2 · δd

(hd)1/d · (Aδ)(d−1)/d
≤ C3 · (Adδ)1/d + C4 · δ

where C3, C4 are constants independent of δ. Since vol(ξ) = 0, we have
(as δ → 0) that

limAdδ = lim vol(Adδ) = lim vol(ξ + δh) = 0.

By ([), it then follows that

lim
ξ · γδ
h · γδ

= 0

which is the required contradiction. �

9. Rationally connected fibrations

Definition 9.1. Let X be a smooth complex projective variety, then

(1) X is rational if it is birational to PnC i.e. C(X) ∼= C(x1, . . . , xn).
(2) X is unirational if there is a dominant morphism PmC 99K X

i.e. if there are inclusions C ⊂ C(X) ⊂ C(x1, . . . , xm).
(3) X is rationally connected if there is a variety T and a morphism

u : U := P1 × T → X such that

u(2) : U ×T U → X ×X is dominant.

In other words for any two general points p and q there is a
rational curve C passing through p and q.

(4) X is rationally chain connected if there is a family of proper
connected algebraic curves g : U → T whose geometric fibers
have only rational components with cycle morphism u : U → X
such that

u(2) : U ×T U → X ×X is dominant.

In other words for any two general points p and q there is a
chain of rational curves C passing through p and q.
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(5) X is uniruled if for any general point p ∈ X there is a rational
curve p ∈ C ⊂ X.

It is clear that if X is rational then it is unirational and if it is
rationally connected then it is rationally chain connected. Note that
the cone over an elliptic curve is rationally chain connected but not
rationally connected. Next we recall the following result of Kollár Mori
and Miyaoka.

Theorem 9.2. Let X be a smooth projective variety of dimension ≤ 2,
then X is rational iff it is unirational iff it is rationally chain connected.

Proof. Rational implies unirational implies rationally chain connected.
Now suppose that X is rationally chain connected, then KX is not
pseudo-effective and so running the minimal model program we arrive
at a Mori fiber space X ′ → Z. If dimZ = 0, then X ′ ∼= P2 and so X is
rational. Otherwise dimZ = 1 and Z is rationally chain connected so
that Z ∼= P1. But then X is birational to a P1 bundle over P1 so that
X is rational. �

Theorem 9.3. If X is a smooth projective variety, then X is rationally
connected iff it is rationally chain connected.

Proof. See [?, §IV]. �

Rational curves on a variety X define an interesting equivalence re-
lation.

Definition 9.4. Let X be a smooth complex projective variety. The
maximally rationally connected fibration (MRC fibration) is a mor-
phism f : X ′ → Z where X ′ is birational to X, the fibers of f are
rationally chain connected and if z ∈ Z is general and C is a rational
curve intersecting X ′z, then C is contained in X ′z.

Theorem 9.5 (Graber-Harris-Starr). Let f : X → B be a morphism
of smooth projective varieties where dimB = 1 and f∗OX = OB. If the
general fibers of f are rationally connected, then f has a section.

Corollary 9.6. The image of the MRC fibration X ′ → Z is not unir-
uled.

Theorem 9.7. Let X be a Q-factorial klt variety such that KX is not
pseudo-effective, then X is uniruled.

Proof. We run the KX mmp with scaling. Since KX is not pseudo-
effective, this ends with a Mori fiber space X ′ → Z. The general fiber
X ′z is Fano since −KX′z = (−KX)|X′z . Let C be a general curve in X ′z
obtained by intersecting general very ample divisors. Since X ′ is klt, it
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is normal and hence smooth in codimension 1. But then C is contained
in the smooth locus of X ′z and KX′z ·C < 0 so that by Bend and Break
there is a rational curve through any point of C and hence through a
general point of X ′z. Note moreover that X 99K X ′ is an isomorphism
in a neighborhood of C and hence −KX ·C < 0. By the same argument
X is uniruled. �

Theorem 9.8. Let (X,B) be a klt variety.

(1) If −(KX +B) is ample then X is rationally connected, and
(2) if f : Y → X a resolution, then every fiber of is rationally chain

connected.

Proof. We proceed by induction on the dimension. Suppose that we
have already shown (1) in dimension d− 1 and (2) in dimension d. For
simplicity we assume that B is 0.

We begin by proving (1) in dimension d. Suppose that−KX is ample.
Pick H ∼Q −KX a general element so that KX +H is klt. Passing to a
Q-factorialization and using (2) in dimension d we may assume that X
is Q-factorial. Since KX is not pseudo-effective, arguing as above we
may run the KX mmp with scaling. This ends with a Mori fiber space
g : X ′ → Z whose fibers are klt Fano varieties so that by induction on
the dimension X ′z is rationally connected. Note that if H ′ is the strict
transform of H then KX′ + H ′ ∼Q 0 is also klt. Let G be an general
ample divisor on Z. Since H ′ is big, we may write H ′ ∼ εg∗G+B where
0 < ε� 1 and B ≥ 0. But then KX′ + (1− δ)H ′+ δ(εg∗G+B) ∼Q 0 is
klt. But then by Kawamata’s canonical bundle formula, we have that

0 ∼Q KX′ + (1− δ)H ′ + δ(εg∗G+B) ∼Q g
∗(KZ +BZ + δεG+MZ

where (Z,BZ) is klt, and MZ is the pushforward of a nef divisor. More
precisely there is a proper birational morphism ν : Z ′ → Z such that

ν∗(KZ +BZ +MZ) = KZ′ +BZ′ +MZ′)

where MZ′ is nef and (Z ′, BZ′) is sub-klt with ν∗BZ′ = BZ and ν∗MZ′ =
MZ . Note that ν∗G is semi-ample and big and so it is easy to see that
BZ′ + MZ′ + 1

2
εδν∗G ∼ ∆Z′ where (Z ′,∆Z′) is klt. But then if ∆Z =

ν∗∆Z′ , it follows that (Z,∆Z) is klt and −(KZ +∆Z) ∼Q
1
2
εδG which is

ample. By induction on the dimension Z is rationally chain connected.
By a result of Graber-Harris-Starr, it follows that X ′ is rationally chain
connected. To show that X is rationally chain connected, consider the
individual steps of the minimal model program Xi 99K Xi+1 and we
show that if Xi+1 is rationally chain connected then so is Xi. Suppose
fi : Xi 99K Xi+1 is a divisorial contraction, then by (2) in dimension
d, the fibers of fi are rationally chain connected and hence so is Xi.
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Suppose instead that fi is a flip and let Xi → Zi, Xi+1 → Zi be the
corresponding contractions. If Xi+1 is rationally chain connected then
so is Zi. By (2) in dimension d, the fibers of Xi → Zi are rationally
chain connected and hence Xi is rationally chain connected.

We will now prove (2) in dimension d+1. We are free to replace Y by
a higher model and hence we may assume that it is a log resolution, in
particular E = Ex(f) is a simple normal crossings divisor. Assume for
simplicity that p ∈ X is an isolated singularity and f is an isomorphism
on X \ {p}. Let G be a general divisor through p. Working locally
over p ∈ X there is an effective exceptional divisor Φ such that −Φ
is relatively ample and hence −Φ ∼Q A where A is a general ample
Q-divisor. We write

KY + Et = f ∗(KX + tG) + Φ + A.

W may assume that (Y,E0) is klt. Let E = F1 + . . . + Fr be the irre-
ducible components of the exceptional divisor. Let ti be the smallest
rational number such that multFi(Eti) = 1. Perturbing G and rela-
belling the Fi we may assume t1 < t2 < . . . < tr. It suffices to show
that Fi is rationally chain connected modulo F1 + . . . + Fi−1 meaning
that for general p, q ∈ Fi there is a chain of curves connecting p, q
which are either rational or contained in F1 + . . . + Fi−1. Proceeding
by induction, it follows that F1 + . . .+Fi is rationally chain connected.
Note that

(KY + Et1)|F1 = KF1 + ∆F1

is klt and ∆F1 ≥ A|F1 . By (1) in dimension d, F1 is rationally chain
connected. We now consider Et2 = E≤1

t2 + τF1. By the connectedness
lemma F1 ∩ F2 6= ∅. Let

(KY + E≤1
t2 )|F2 = KF2 + ∆F2 ,

then KF2 +∆F2 ∼Q −τF1|F2 is dlt but not pseudo-effective. We run the
KF2 + ∆F2 minimal model program with scaling which terminates with
a Mori fiber space g : F ′2 → Z. Since F1|F2 is g-ample, it dominates
Z. Since −(KF2 + ∆F2) is g-ample, the fibers of g are rationally chain
connected and so (following the arguments above) we see that F2 is
rationally chain connected modulo F2 ∩ F1. Repeating this argument
the claim follows. �

Corollary 9.9. If (X,B) is klt, then

(1) X is rationally connected iff it is rationally chain connected.
(2) If −(KX +B) is nef and big, then X is rationally connected.

Proof. (1) Assume that X is rationally chain connected. By the previ-
ous Theorem 9.8, every fiber of a resolution Y → X is rationally chain
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connected and hence Y is rationally chain connected. By Theorem 9.3,
Y is rationally connected but then so is X.

(2) Since −(KX + B) is big we may write −(KX + B) ∼Q A + G
where A is ample and G ≥ 0. But then

−(KX +B + δG) ∼Q (1− δ)(KX +B) + δA is ample

and (X,B+δG) is klt. By Theorem 9.8 X is rationally chain connected.
We conclude by (1).

�
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